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Abstract – In this study we will introduce atrial fibrillation, one of the cardiac arrhythmias, and see how it can be di-
agnosed using convolutional neural networks in combination with various methods and supervised learning models, 
including:  gray-level  co-occurrence  matrix,  short-time  Fourier  transform based  spectrogram,  support-vector  ma-
chines, k-nearest neighbors, multi-layer perceptron, focal loss, multi-scale decomposition, time-frequency analysis.

Index terms – Biomedical monitoring, electrocardiogram, arrhythmia, atrial fibrillation, deep learning, convolutional 
neural network, classification.

 1. Introduction
Cardiovascular diseases are a group of diseases affecting 
the heart and/or blood vessels. On a world level, and in 
particular in countries with a typically Western lifestyle, 
cardiovascular diseases are the cause of 17 million deaths 
per year.

Figure 1: common causes of death

The  narrowing,  obstruction  or  excessive  enlargement 
(aneurysm) of the blood vessels that can accompany this 
disease  are  in  fact  responsible  for  very  widespread 
pathologies, such as coronary (angina pectoris and heart 
attack), cerebrovascular (stroke) and peripheral vascular 
diseases. In the family of cardiovascular pathologies, all 
congenital  heart  defects,  rheumatic  diseases  involving 
myocardium,  various  forms  of  arrhythmia,  pathologies 
affecting the heart valves and heart failure are also in-
cluded. Cardiac pathologies are divided into: cardiovas-
cular disease, coronary heart disease, heart "muscle" dis-
ease, heart valve disease, pericardial disease, heart con-
duction disease, vessel disease.

In this study we focus on heart conduction disease in par-
ticular on atrial fibrillation, one of the two arrhythmias[b].

 1.1. Electrocardiogram
The electrocardiogram (ECG) is the graphic reproduction 
of the electrical activity of the heart during its operation, 

recorded  at  the  level  of  the 
body surface. On the surface 
of  the  body,  low  intensity 
electric  fields  (1mV)  are 
present and can be recorded, 
which in the individual at rest 
are  mainly  due  to  periodic 
depolarizations  and  repolar-
izations  of  the  heart.  To 
record  an  electrocardiogram 
it  is  necessary to  have elec-
trodes  placed  on  the  body 
surface,  forming  leads  ar-
ranged in such a way as to be 
able  to  better  analyze  the 
variations  of  the  heart's 
dipole  vector.  In  order  to 
record the potentials, 10 elec-
trodes  are  placed  on  the 
body: 4 peripheral (wrists and ankles) and 6 precordial, 
so as to record 12 leads.

In general, the electrocardiogram (ECG) signals consist 
of six components that are designated as P, Q, R, S, T, 
and U:

• The P wave represents atrial depolarization [0.2 – 
0.4mV];

• The QRS complex represents ventricular depolar-
ization [1 – 2mV];

• The T wave represents ventricular repolarization 
[0.4 – 0.5mV];

• The U wave represents papillary muscle repolar-
ization.

Usually an electrocardiograph has an amplification of a 
factor of 60db only in the useful band. For monitoring it 
uses frequencies between 0.05 – 50Hz, while for diag-
nostics purpose it go up to 1kHz[13].
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Figure 2: ECG related to 
the various action poten-
tials of the heart
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Figure 3: schematic representation of a normal ECG

 1.2. Arrhythmia
Arrhythmia  is a clinical condition in which the normal 
frequency or regularity of the heart rhythm is missing, or 
the physiological atrio-ventricular activation sequence is 
altered. Common symptoms are:

• Extrasystole: it is like a “void”, a missed beat;

• Tachycardia:  the  sensation  is  of  an  increase  in 
beats, which can be regular but also irregular, fa-
tigue, difficult breathing, dizziness;

• Bradycardia: fatigue, dizziness and possible loss 
of consciousness.

The  alterations  can  have  the  following  origins:  at  the 
level of the sinoatrial node, of supraventricular origin, at 
the level of the atrioventricular node, of ventricular ori-
gin. As for the supraventricular and ventricular origins, 
we have two types of fibrillation: atrial and ventricular[c].

 a) Ventricular fibrillation
Ventricular fibrillation (VF) is a very rapid, chaotic car-
diac arrhythmia  that  causes  uncoordinated  contractions 
of the heart muscle. With the onset of this arrhythmia, 
blood circulation slows down considerably, up to cardio-
circulatory arrest and subsequent respiratory arrest, until 
death  if  cardioversion  of  the  rhythm is  not  intervened 
through  defibrillation  and  cardiopulmonary  resuscita-
tion[c].

 b) Atrial fibrillation
Atrial fibrillation (AF) is a cardiac arrhythmia that origi-
nates in the atria. The electrical impulses that give rise to 
the  contraction  of  the  atria  are  activated  in  a  totally 
chaotic  and  fragmentary  way,  giving  rise  to  multiple 
wave fronts and disorganized and fragmentary contrac-
tions. The current clinical approach aims to treat symp-
toms by:

• Rhythm control (i.e. recovery and maintenance of 
sinus  rhythm  with  anti-arrhythmic  drugs  or 
catheter ablation);

• Heart  rate  control  with  drugs  that  regulate  the 
conduction of atrial stimuli to the ventricles asso-
ciated with anti-thrombotic therapy.

Figure 4: normal heartbeat & atrial fibrillation

From  Figure  5 it  can  be  observed that  for  AF patient 
there  are  tiny  irregular  fluctuations  in  the  P-wave and 
QRS complex. Given the presence of these irregularities, 
for the purpose of arrhythmia screening various morpho-
logical  features,  including the  peaks  and widths  corre-
sponding to different ECG segments are typically used.

Figure 5: ECG signal of healthy person (top) and AF patient 
(bottom)

In Figure 6 are visible the F-waves with their saw-tooth 
appearance.

AF occurs in 2% of the population, and increases to 6% 
by the age of 65. The most serious complication of AF is 
thromboembolic  stroke,  which  leads  to  permanent  dis-
ability or even death. Since in many cases the symptoms 
are  initially  imperceptible  to  patients,  diagnosing  it  as 
soon as possible becomes difficult, for this reason with 
the current technological progress,  diagnostic tools can 
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be included in wearable devices,  for example in smart 
watches or in affordable medical devices[d].

Figure 6: AF beat

 2. Notation and relevant defi-
nitions
The introduction of the computational models used will 
now follow.

 2.1. Artificial neural network
An artificial neural network (ANN) is an interconnected 
group of nodes, inspired by a simplification of neurons in 
a brain. As in  Figure 7 each circular node represents an 
artificial neuron and a line represents a connection from 
the output of one artificial neuron to the input of another.

Figure 7: artificial neural network scheme

Typically neural networks are obtained through the com-
bination of simple predictor of the form g(x)=σ (wT x) . 
The  function σ :ℝ→ℝ is  known  as  activation  func-
tion[12].

To define the neural computation we must specify: the 
neural  model,  the model  dimensions,  the configuration 
procedure[11].

 a) Neural model
Neural  model  is  composed  by  activation  function  and 
network topology.

Common activation function are: binary step, linear acti-
vation, sigmoid, tanH, ReLU, softmax, swish, etc…

The neural network topology represents the way in which 
neurons are connected to form a network. In other words, 
the neural network topology can be seen as the relation-

ship between the neurons by means of their connections. 
The topology of a neural network plays a fundamental 
role in its functionality and performance. Some famous 
networks are: feed-forward NN, regulatory feedback net-
works,  radial  basis  function  network,  recurrent  neural 
network, modular neural network, etc…

 b) Configuration procedure
Configuration procedure is composed by: configuration 
algorithm, training set, validation set.

Configuration  algorithm must  be  chosen  based  on  the 
learning  paradigm:  supervised,  unsupervised  and  rein-
forcement.

In supervised learning the data set contain both the data 
points  and the labels . The learning task is to pro𝒳 𝒴 -
duce the desired output  y for each input  x. A cost func-
tion  is used to estimate the correctness of the predicted𝓁  
label ŷ compared to the desired output y.

The simplest division of the data-set is using the Pareto 
principle, that divide in 80/20 the training and the test 
set.

Figure 8: 80/20 rule

When evaluating different settings for estimators, there is 
still a risk of over-fitting on the test set because the pa-
rameters can be tweaked until the estimator performs op-
timally.  This  way,  knowledge  about  the  test  set  can 
“leak” into the model and evaluation metrics no longer 
report on generalization performance. To solve this prob-
lem, yet another part of the data-set can be held out as a 
so-called “validation set”: training proceeds on the train-
ing set, after which evaluation is done on the validation 
set, and when the experiment seems to be successful, fi-
nal evaluation can be done on the test set.

Figure 9: K-Fold CV

However,  by  partitioning  the  available  data  into  three 
sets, we drastically reduce the number of samples which 
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can be used for learning the model, and the results can 
depend  on  a  particular  random choice  for  the  pair  of 
(train, validation) sets.

A solution to this problem is a procedure called cross-
validation (CV). A test set should still be held out for fi-
nal evaluation, but the validation set is no longer needed 
when doing CV. In the basic approach, called K-Fold CV 
(Figure 9), the training set is split into k smaller sets[i].

Instead unsupervised learning looks for previously unde-
tected patterns in a data set with no pre-existing labels.

Reinforcement learning minimize long-term cost modify-
ing the network’s weights. At each point in time an ac-
tion is performed and an observation is received with a 
cost. At this point the algorithm/agent decides whether to 
perform new actions to uncover their cost or to exploit 
prior  learning.  In this  case NN is used as the learning 
component.

 2.2. Feed-forward neural network
In a  feed-forward neural  network connections  between 
units do not form loops and information only moves in 
one  direction,  forward,  with  respect  to  entry  nodes, 
through hidden nodes (if  any)  to  exit  nodes.  Feed-for-
ward NN computes a function f :ℝd→ℝn .  A parameter
w ij∈ℝ (called  weight)  is  associated  with  every  edge
(i , j) . NNs are trained using algorithms that reduce the 
training  error.  Fixed  a  cost  function  ,  an  example𝓁
(x t , yt) , defined 𝓁 t(W )=𝓁 (f G ,W , σ (x t), y t) and Z t as the 
index of a random training example,  then the standard 
training algorithm for NNs is stochastic gradient descent:

w i , j← wi , j−η t

∂ 𝓁 Z t
(W )

∂w i , j

:(i , j)∈E (1)

This procedure is known as error back-propagation algo-
rithm[12].

 2.3. Convolutional neural network
Convolutional neural networks (CNN) function like all 
feed-forward  neural  networks:  an  input  layer,  one  or 
more hidden layers, which perform calculations using ac-
tivation  functions,  and an output  layer  with  the result. 
The difference is  precisely the convolution in  place of 
general matrix multiplication. The typical architecture of 
a CNN is formed by: convolutional layer, pooling layer, 
ReLU layer, fully connected layer and loss layer.

Figure 10: typical architecture of a CNN

 a) Convolution
Discrete convolution is an operation between two func-
tions f and h that produce a third function G which con-
sists in integrating the product between the first and the 
second translated by a certain value. For complex-valued 
function f and h defined on the set ℤ the discrete convo-
lution G of f and h is given by[h]:

G [m,n]=( f∗h) [m , n] (2)

(f ∗h)[m, n]≝∑
j
∑

k

h [ j , k ]⋅f [m− j , n−k ] (3)

Figure 11: convolution

 2.4. QRS recognition algorithms 
QRS recognition algorithms are used to facilitate the an-
notation of the QRS complex in databases.

Various classes of QRS recognition algorithms have been 
proposed in the literature, which can be classified accord-
ing to their complexity and performance. The Pan-Tomp-
kins algorithm is one of the most used methods for real-
time recognition of the QRS complex from the ECG sig-
nal[13].

The performance of the method was tested on an anno-
tated arrhythmia database and evaluated also in presence 
of noise. Pan and Tompkins reported that the 99.3% of 
QRS complexes was correctly detected[e].

 2.5. Assessment indicators
To evaluate the performance of the proposed classifiers, 
five statistical indicator are commonly used:

 a) Accuracy
It’s the ratio of the correctly labeled subjects to the whole 
pool of subjects. Accuracy answers the following ques-
tion: How many patients did we correctly label out of all 
the patients? 

TP+TN
TP+TN +FP+FN

(4)

 b) Sensitivity
Sensitivity is the ratio of the correctly AF labeled by our 
program to all who have AF in reality.
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Sensitivity  answers  the  following  question:  of  all  the 
people who have  AF,  how many of those we correctly 
predict?

TP
TP+FN

(5)

 c) Specificity
Specificity  is  the correctly  healthy labeled by the pro-
gram to all who are healthy in reality. Specificity answers 
the following question: of all the people who are healthy, 
how many of those did we correctly predict?

TN
TN +FP

(6)

 d) Precision
Precision is the ratio of the correctly  AF labeled by our 
program to all AF labeled. Precision answers the follow-
ing: how many of those who we labeled as AF are actu-
ally AF?

TP
TP+FP

(7)

 e) F1-score
F1-score considers both precision and sensitivity. It’s the 
average  of  the  precision  and  sensitivity  (for  example, 
you’d rather get some healthy labeled AF over leaving an 
AF labeled healthy).

TP

TP+
1
2

(FP+FN ) (8)

 3. CNN and AF detection
Below is the introduction of ten methodologies for AF 
detection using convolutional neural networks.

 3.1. Time-frequency analysis and 
CNN (detect 12 heart rhythm)
Z. Wu, T. Lan, C. Yang, and Z. Nie[1] proposed a method 
formed  of  three  steps:  preprocessing,  time-frequency 
transform  and  the  convolutional  neural  network.  This 
method is able to recognize 12 different heart rhythms:

1. Normal sinus rhythm (NSR);

2. Paced rhythm (P);

3. Atrial bigeminy (AB);

4. Atrial fibrillation (AF);

5. Atrial flutter (AFL);

6. Ventricular flutter (VF);

7. First degree heart block (BI);

8. Premature ventricular contractions (PVC);

9. Sinus bradycardia (SBR);

10. Ventricular tachycardia (VT);

11. Supraventricular tachy-arrhythmia (SVTA);

12. Noise and signal contaminated by noise.

The fact  that  this  method has  not  specialized  only  on 
atrial fibrillation, and that its output consists in listing the 
percentage  of  the  input  belonging  to  these  12  classes, 
makes  it  in  addition  to  having  given  excellent  results 
(97%) one of the best.

Figure 12: the process

 a) Database
The authors used 6 different databases from PhysioNet 
(that are labeled with the 12 different heart rhythms listed 
before):

1. MIT-BIH arrhythmia;

2. MIT-BIH malignant ventricular arrhythmia;

3. MIT-BIH atrial fibrillation;

4. Long-term AF;

5. MIT-BIH normal sinus rhythm;

6. MIT-BIH noise stress test.

 b) Preprocessing
The ECG signal is formed of 12 leads and need to be pre-
processed, so the signal was splitted in segments of 10s 
(using  rhythms  annotations  included  in  the  databases) 
and resampled to 125Hz. Then a second order high-pass 
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filter with a cutoff frequency of 0.5Hz was used to re-
move the baseline of each signal.

The “MIT-BIH noise stress test” (it contains noise from 
baseline wander, muscle artifact and electrode motion ar-
tifact) was used to add noise to signals to make the net-
work more reliable to noise. To the signal  x was added 
the noise signal n multiplied by the gain a

y=x+a⋅n (9)

The gain a is calculated using the power of the raw sig-
nal and the power of the noise signal.

 c) Time-frequency transform
Time-frequency analysis is one of the important methods 
to process non-stationary signals and provides informa-
tion on time domain and frequency domain.

The  authors  use  three  different  methods:  short-time 
Fourier transform (STFT), continuous wavelet transfor-
mation  (CWT)  and  pseudo  Wigner-Ville  distribution 
(PWVD).

The STFT of the sequence x(t) is defined as:

STFT (t , w)=∫
−∞

+∞

x (τ)⋅w(τ−t )⋅e− jwτ dt (10)

where  w(t) is  the  window function  of  2s  and the step 
length is 0.08s. The CWT is defined as:

CWT (a , b)=∫
−∞

+∞ x (t)
√a

ψ( t−b
a )dt (11)

where a is the scale factor and b is the time shift factor, 
ψ(t) is the Morlet wavelet basis:

ψ (t)=exp(
−t2

2
)⋅cos(5 t) (12)

At last, the PWVD is defined as:

PWVD (t , w)=∫
−∞

+∞

w(τ)⋅x (t +
τ
2

)⋅̄x (t−
τ
2

)⋅e− jwτ dτ (13)

with x̄ the complex conjugate of x.

After the time-frequency transform (one of this) we can 
calculate the time-frequency distribution matrix as:

|Y (a ,b)|=√Y 2⋅(a ,b) (14)

Figure 13: STFT, CWT & PWVD

 d) CNN
The network is formed by a convolutional block and a 
fully connected layer.

The convolutional block is formed by the concatenation 
of a block repeated 4 times. This block is formed by:

1. Convolution layer: 64 kernels (5×5 step 1), pad-
ding same, ReLU;

2. Convolution layer: 64 kernels (5×5 step 1), pad-
ding same, ReLU;

3. Max pool layer: (2×2);

4. Dropout layer: dropout rate 0.3.

The fully connected layer is formed by:

1. Flatten layer;

2. Fully Connected layer: 128 cells, ReLU;

3. Dropout layer: dropout rate 0.5;

4. Fully Connected layer: 12 outputs, Softmax.

The last layer outputs the probability for each of the 12 
different heart rhythms.

 e) Training method
The authors used a 5-fold cross validation with the cross-
entropy as the loss function:𝓁=−∑

i=1

n

yi⋅log( ŷ i) (15)

and the root mean square prop (RMSprop) method was 
used to update the weights of the network:

w t=wt −1−a⋅
dw

√(sdw)+ε
(16)

where  α is the learning rate,  sdw is the accumulation of 
momentum and ε>0 .

 f) Results
Four metrics where used to evaluate the three methods, 
the ranking was: STFT, CWT, PWVD.

Table 1: classification performance

Method Accuracy Sensitivity Specificity F1

STFT 96.65 96.47 99.68 96.27

CWT 95.26 94.71 99.55 94.80

PWVD 92.07 92.19 99.25 92.26

 3.2. Lightweight CNN
D. Lai, X. Zhang, Y. Bu, Y. Su and C. Ma[2] proposed a 
method formed of three steps: preprocessing,  extraction 
of cardiac rhythms features and a lightweight CNN.
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Figure 14: schematic diagram

 a) Database
The database  used  was  the  MIT-BIH atrial  fibrillation 
database from PhysioNet formed of 23 long-term ECG 
with a sample rate of 250Hz that are labeled with 4 dif-
ferent heart rhythms:

1. Atrial fibrillation (AF);

2. Atrial flutter (AFL);

3. Atrial-ventricular junctional rhythm (AVJ);

4. Other rhythms (N).

 b) Preprocessing
In this  step each recording is  divided in  segmented of 
10s,  a  median  filter  (0.5Hz)  and  a  band-pass  filter 
(100Hz) are applied, to reduce noise and increase preci-
sion and efficiency of the network. Early normalization 
was used on the data:

x̂=
x−μ

σ
(17)

and batch normalization was used to accelerate the train-
ing during the back-propagation, using the following up-
date equation (18), where β, γ are trained at each iteration 
on k iterations:

y(k)=γ(k)⋅x̂ (k )+ β(k) (18)

 c) Extraction of cardiac rhythms fea-
tures
A convolutional layer is used to obtain a feature maps c:

c=σ (b+∑
n

w⋅x i+ k) (19)

where σ is the activation function (ReLU), b is the bias of 
the  activation  map,  n the  size  of  the  kernel,  w is  the 
weight and k is the stride. The result of the convolutional 
layer is fed into a pooling layer P, to reduce the dimen-
sion of the feature map c and the number of parameters, 
as follows:

P=max
t ∈T

ci +s (20)

where t is the pooling window size and s the stride.

Then two different  test where done (as shown in Figure
14), one using raw data and one using ECG signal analy-
sis:

• R-wave detection;

• R-R interval calculation;

• F-wave transformation (in Figure 6).

The  presence  of  numerous  low-amplitude  F-waves  in-
stead of P-wave can be found in AF, jointly with asym-
metrical R-R intervals.

 d) Lightweight CNN

Figure 15: lightweight CNN

A lightweight CNN was used as a binary classifier (de-
tails are shown in Figure 15), then back-propagation was 
used to reduce the loss.

Figure 16: stratified K-Fold CV

A stratified 5-fold CV was used to tune both the model 
architecture and the hyper-parameters of  the CNN and 
evaluate the model performance.

 e) Results
Three metrics where used to evaluate the two methodol-
ogy:

1. R-R intervals +  F-wave spectrum;

2. Raw data.

Table 2: classification performance

Low level features Accuracy Sensitivity Specificity

RRI+FWS 97.5 97.8 97.2

Raw data 86.3 89.5 82.7

 3.3. Multi-scale decomposition en-
hanced residual CNN
X. Cao, B. Yao and B. Chen[3] proposed a signal decom-
position  via  derived  wavelet  frames  and  two  different 
CNN models: MSResNet and FDResNet.
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 a) Database
The database used from the PhysioNet Challenge 2017 is 
contributed by AliveCor (a manufacturer of single-chan-
nel ECG device) and is formed of 8528 single short ECG 
lead recordings,  each of which is  form individual  cus-
tomer of AliveCor, with a sample rate of 300Hz that are 
divided in 4 categories:

1. AF rhythm (A);

2. Normal rhythm (N);

3. Other rhythm (O);

4. Noisy recordings (~).

 b) Preprocessing
In this step each recording is divided in segmented of 9s 
and derived wavelet frames (DWFs) is applied.

As you can see in  Figure 17 implicit dual-tree complex 
wavelet packets (IWPs) are constructed based on dyadic 
dual-tree CWPs (DDCWPs).

Figure 17: DWFs

To derive the IWPs, assuming x{(n)} is the ECG signal, 
then:

1. Perform a  dual-tree  wavelet  packet  decomposi-
tion, with k as the number of decomposition lay-
ers,  j as the sequence number of the sub-signal. 
x{(n)} is transformed into a set of sub-signals:

Dk={Dk
j (n) : j=1 , 2 ,... ,2k} (21)

2. Rearrange the content of Dk according to the cen-
tral frequency as Rk={Rk

j(n) : j=1, 2 , ..., 2k} , let:

j=∑
m=0

k−1

2m⋅nm+1 (22)

the binary coding of the index j, and construct a 
new index as follows

j́=∑
m=0

k−1

2m⋅ńm+1 (23)

where the parameter ńm is defined as

ńm={nm , m=k−1

mod(nm+nm+1 ,2) m=0 , 1 ,... , k−2
(24)

3. Generate the implicit wavelet packet with the fol-
lowing equation:

iwpk
j(n)=Rk

2 j(n)+Rk
2 j +1(n) , 1≤2k −1−1 (25)

Figure 18: AF rhythm & the reconstructed sub-signal

Figure 19: frequency-scale topology of the derived wavelet 
packet frame

In  Figure 19 it can be seen that the center frequency of 
the derived wavelet packet is the band boundary of the 
traditional  binary  wavelet 
packet,  thereby improving 
the ability of the algorithm 
to  extract  the  information 
of  the  transition  band.  In 
Figure 18 the result of the 
DWFs  on  the  AF  rhythm 
signal.

 c) MSResNet
Multi-scale  decomposition 
enhanced  fast  down-sam-
pling  residual  CNN  con-
sists  of  three  parallel 
FDResNet,  same structure 
but  independently  trained 
by  reconstructed  samples 
of different scales (as you 
can see in Figure 20), each 
of them has learned differ-

Figure 20: MSResNet
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ent features, and the independent classification capabili-
ties  are different.  The predictions  are connected into a 
small neural network that learn the end-to-end character-
istics of the three, and higher recognition accuracy can be 
obtained.

 d) FDResNet

Figure 21: FDResNet

Fast down-sampling residual CNN is mainly composed 
of: a fast down-sampling module, a residual convolution 
module, and a classification module, as you can see in 
Figure 21 the full  network structure is  composed of  3 
module:

1. Fast  down-sampling  convolutional  module:  is 
formed by 2  ×  convolutional layer (ReLu) with 
random dropout layer and a batch-normalization 
layer to enhance the generalization of the model. 
This module effectively reduces the calculation of 
subsequent DN, reduces data redundancy and fa-
cilitates model learning;

2. 3  ×  residual  convolutional  module:  formed  by 
convolutional layers in series and residual short 
circuit.  The width of the 3 residual convolution 
modules is gradually increased. All of them use a 
max-pooling  layer  to  down-sample  the  feature 
vectors;

3. Classification module:  consist of a convolutional 
layer (to reduce the dimension of the feature vec-
tors), a flatten layer, a random dropout layer (to 
prevent  overfitting),  2  full  connection  layers 
(ReLU) and a softmax classifier.

 e) Results
6-Fold CV was used to train the network. FDResNet can 
learn effective classification features from time domain 
ECG waveform. Based on different coupling strategies 
(concatenate layer in Figure 20) MSResNet gives the re-
sults shown in Table 3.

Table 3: FDResNet classification performance

Sub-band Normal AF F1

Raw 0.8059 0.9816 0.8702

wp1
3 0.7982 0.9757 0.8766

wp1
4 0.8215 0.9751 0.8973

Figure 22: performance of different coupling methods

 3.4. Dual heartbeat coupling based 
on CNN
X. Zhai and C. Tin[4] propose to transform the beats into a 
dual beat coupling matrix (2D) as input of the CNN.
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 a) Database
The authors use the  MIT-BIH arrhythmia database from 
PhysioNet, 48 records of 30min two-channel ECG sig-
nals. These were filtered with a band-pass filter (0.1Hz – 
100Hz) and digitized at 360Hz.

 b) Preprocessing
The beat was segmented such that it was centered around 
the R peak (using a max interval of 20s) as in the left part 
of  Figure 23. Because each segment can have different 
length, they were scaled into the same length M.

Figure 23: coupling matrix of beats originating from the si-
nus mode

A series of three adjacent beats is taken into account. The 
first  pair  is  (Beati-1,  Beati)  denoted  as  DualBeati-1,i,  the 
second pair is (Beati, Beati+1) denoted as DualBeati,i+1, as 
shown in the left part of Figure 23.

Then a coupling matrix  (CM)  with size  M×M is  com-
puted as:

CM=⌊ DualBeati−1 ,i [1] , ..., DualBeat i −1 , i [M ]⌋
× [ DualBeat i ,i +1[1] , ... , DualBeat i ,i+1[ M ]]T (26)

The result is shown in the right part of Figure 23 (an ex-
ample on a supraventricular ectopic beat is shown in Fig-
ure 24).

Figure 24: coupling matrix from a supraventricular ectopic 
beat.

 c) CNN classifier
The network (Figure 25) is formed by:

1. Input (73×73);

2. Convolutional l. with ReLU (50@66×66)

3. Maximum sub-sampling l. (50@33×33)

4. Convolutional l. with ReLU (100@24×24)

5. Average sub-sampling l. (100@8×8)

6. Convolutional l. with ReLU (150@4×4)

7. Fully connected layer with dropout (150);

8. Softmax loss layer (5).

Figure 25: CNN scheme

 d) Results
Results show that the method perform better on VEB.

Table 4: classification performance

Beats Accuracy Sensitivity Specificity Precision

VEB2 98.6 93.8 99.2 92.4

SVEB3 97.5 76.8 98.7 74.0

 3.5. CNN with SVM4

Z. Li, X. Feng, Z. Wu, C. Yang, B. Bai and Q. Yang[5] 

proposed the  following  architecture  (as  in  Figure  26): 
original data will be calculated through convolution layer 
by feed-forward channel, then the result will be fed to a 
max-pooling  layer  and  stretched  as  a  one-dimensional 
vector  through  a  flatten  layer.  Finally,  the  vector  is 
trained into a SVM classifier.

Figure 26: flow diagram

 a) Database
The data-set were provided and supported by West China 
Hospital5 in  collaboration  with  Sichuan  University.  It 
consist  of  ECG signals  from 14 patients  with  AF,  ac-
quired via the preoperative body surface potential map-
ping (BSPM) and an integrated back-end acquisition sys-
tem (NeuroScan).  BSPM consist  of  74  front  electrode 

2 Ventricular ectopic beats

3 Supraventricular ectopic beats

4 Support Vector Machine

5 http://www.wchscu.cn
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points and 54 on the back, with a sampling frequency of 
1kHz. The method is compatible with the standard 12-
lead electrode coordinates, and contains more spatiotem-
poral information.

Figure 27: BSPM system

 b) Preprocessing
During  the  acquisition  interference  are  removed  via  a 
50Hz notch filter, then raw data were processed:

1. A zero-phase, third-order Butterworth filter (0.5-
100Hz);

2. An absolute value filter;

3. A third-order Butterworth filter (20Hz cutoff).

Data are normalized (as in Eq.  (17)), and then 160s are 
kept, from the center, of each acquisition. 10-fold cross 
validation is used.

 c) CNN
Convolution layers use ReLU as activation function. The 
authors  choose  Adam[f] (Adaptive Moment  Estimation) 
as the algorithm for gradient descent with the following 
update rule:

w t +1=w t−α⋅
m̂w

√ v̂w+ϵ
(27)

with gradient w, step-size α, momentum factor ϵ, and bi-
ased first moment estimate  vw,  and second raw moment 
estimate mw.

 d) SVM
The decision function with kernel used in this project is:

g(x)=sign(∑
i=1

N

α̂i⋅y i⋅K (τ , x )+ b̂) (28)

The authors tried three different kernels:

1. Linear kernel

K (τ , x)=(τ⋅x+1) (29)

2. Polynomial kernel, where q is the degree.

K (τ , x)=(τ⋅x+1)q (30)

3. Gaussian kernel, where δ is the width.

K (τ , x)=exp(
‖τ−x‖2

2δ2
) (31)

 e) Results
As in  Figure 28 the RBF (Radial basis function) kernel 
give the best result:

Figure 28: ROC curve for the 3 different kernels

Table 5: classification performance

Accuracy Sensitivity Specificity

96.06 88.48 96.29

 3.6. Deep CNN

Figure 29: structure diagram

B. Pourbabaee, M. Roshtkhari and K. Khorasani[6] inves-
tigate the Paroxysmal atrial fibrillation (PAF) classifica-
tion problem under two experiments:



M. Maione – Study on the use of convolutional neural networks for the diagnosis of atrial fibrillation 12 / 19

1. An end-to-end CNN network is applied to extract 
the features and classify them,  the  first  3 layers 
(convolution layer, subsampling layer, fully-con-
nected layer) in Figure 29 and the output layer;

2. The first 3 layers are used jointly with one of this 
classifiers: KNN6, SVM7, MLP8.

 a) Database
The PAF prediction challenge database, from PhysioNet, 
was used in this project, it  consist of 150 two-channel 
ECG recordings each of 30min, half of the patients are 
healthy. The data-set was divided in train and test set (ra-
tio 70/30).

 b) CNN
As mentioned before the CNN is composed by:

1. Convolution layer (size 32);

2. Subsampling layer (size 128);

3. Fully-connected layer (size 64).

The CNN use a stochastic gradient descent (SGD) algo-
rithm, it’s  robust  to  distortions,  displacements,  transla-
tions  and noise effects  on  the input.  The loss function 
used was the log-likelihood (NLL):

NLL(θ , D)=−∑
i=0

|D|

log (P(Y = y i∣x i ,θ)) (32)

with parameters θ, and training data D, in addiction was 
used an L2 regularization mechanism where λ is a regu-
larization parameter:

E(θ , D)=NLL(θ , D)+λ‖θ‖2 (33)

The  following  classifiers  receives  from  the  fully-con-
nected layer a feature vector of 64 elements.

 c) KNN

Figure 30: KNN learning curve

Is a type of instance-based learning: it does not attempt 
to construct a general internal model, but simply stores 
instances of the training data. Classification is computed 

6 K-nearest neighbors algorithm

7 Support-vector machines
8 Multilayer perceptron

from a simple majority vote of the nearest neighbors of 
each point: a query point is assigned the data class which 
has the most representatives within the nearest neighbors 
of the point.

The optimal choice of the value  k is highly data-depen-
dent: in general a larger k suppresses the effects of noise, 
but  makes the classification boundaries less distinct as 
shown in Figure 30. The best result is obtained with k=2.

 d) SVM
Support Vector Machine is a linear model for classifica-
tion and regression problems. It can solve linear and non-
linear problems and work well for many practical prob-
lems. The idea of SVM is simple: The algorithm creates 
a hyperplane which separates the data into classes.

The authors tried two different kernels, a linear kernel

K (τ , x)=(τ⋅x+1) (34)

Figure 31: linear kernel - learning curve

and a Gaussian kernel

K (τ , x)=exp(
‖τ−x‖2

2δ2
) (35)

Figure 32: Gaussian kernel - learning curve

The linear kernel obtain his best result with τ=25 with a 
CCR of 87.67%. The Gaussian kernel obtain better result 
compared to the latter  using a kernel variance of δ=2.85 
and a τ=11 with a CCR of 90%.
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Figure 33: Gaussian kernel - learning curve

 e) MLP
Multi-layer perceptron is a type of network where multi-
ple layers of a group of perceptron are stacked together 
to make a model. The best selection for the number of 
neurons in the hidden layer is obtained with 37.

Figure 34: MLP learning curve

 f) Results
Therefore, the KNN is capable of screening the PAF pa-
tients more accurately than the other classifier methods, 
and it can be proposed as the most suitable methodology. 
We should emphasize that the proposed CNN network is 
more  appropriate  to  be  utilized  as  a  feature  learning 
mechanism than a classifier, since the patient screening 
performance can  be improved by combining the  CNN 
with other conventional classifiers as compared to only 
an end-to-end CNN architecture.

Table 6: classification performance

Method Sensitivity Specificity CCR

End-to-end CNN 0.7647 0.9456 0.8533

KNN 0.9020 0.9048 0.9100

Linear SVM 0.8758 0.8707 0.8767

Gaussian SVM 0.8627 0.9320 0.9000

MLP 0.8235 0.9116 0.8633

 3.7. DCN with focal loss and image 
generation
M. Al Rahhal, Y. Bazi, H. Almubarak, N. Alajlan and M. 
Al Zuair[7] proposed a two-stage CNN for carrying classi-
fication. The first module aims to convert the ECG signal 
to an image using an opportune generative network (Fig-
ure 35).  The second one called discriminative network 
mainly  based on dense  convolutional  networks  (DCN) 
takes the output of the generative module and carries out 
classification  as  in  standard  image  classification  para-
digms (Figure 36).

Data are said to suffer the “Class Imbalance Problem” 
when the  class  distributions  are  highly  imbalanced.  In 
this  context,  many  classification  learning  algorithms 
have  low  predictive  accuracy  for  the  infrequent  class. 
The  authors  propose  to  exploit  the  focal  loss  (FL)  to 
down-weight the loss for the well-classified ECG beats.

 a) Generative network
The  conversion  of  the  ECG  signal  into  an  image  is 
achieved through:

1. 2 fully-connected layers (size of 1024 and 1568);

2. A reshape layer: from (1568, 1) to (32, 7, 7) with:

X t
r=reshape(ReLU ( X t))7

7 (36)

3. 2  up-sampling/convolution  layer  blocks,  com-
posed by:

i. A layer of up-sampling;

ii. A convolution;

iii. Batch normalization, that allows each layer of 
the network to learn by itself a little more in-
dependently of other layers;

iv. ReLU activation;

v. Dropout regularization layers, used to prevent 
overfitting during the training phase, by ran-
domly dropping nodes from the hidden layers.

4. A convolution layer: from (64, 28, 28) to (3, 28, 
28).

Figure 35: generative network

 b) Discriminative network
It takes the images produced by the generative module as 
its input and classifies them into one of this four class:
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1. N: Normal beat;

2. F: Fusion of ventricular and normal beat;

3. S: Supraventricular premature beat;

4. V: Premature ventricular contraction.

Figure 36: discriminative module

As shown in Figure 36 it consist mainly of dense block 
(Figure 37) to enhance the information sharing and infor-
mation flow between layers, direct connections from any 
layer to its subsequent layers were introduced. Between 
every dense block there is a transition block that perform 
convolution and pooling to down-sample the data.

Figure 37: Dense Block

The output x𝓁 of each layer of the DenseNet (Figure 37) 
is, with [x0, x1, …, x -1𝓁 ] the concatenation of the output of 
the previous  layers and  H𝓁 a  non-linear transformation 
(like ReLU, pooling,  batch normalization,  convolution, 
etc...):

x𝓁=H 𝓁 ([x0 , x1 , ... , x𝓁−1]) (37)

 c) Focal loss
There are two popular ways to address data imbalance in 
ML:  down-sampling  dominant  cases  (or  oversampling 
minority cases),  changing weights in the loss function. 
The authors follows the second way and proposes a new 
loss function to address this problem, the focal loss. Fo-
cal loss is derived from cross-entropy loss:

CE ( p , y)={−log (p) , y=1
−log (1− p), else

(38)

pt={p , y=1
1−p , else

(39)

CE( p , y)=CE( pt)=−log( pt) (40)

in  focal  loss  a  modulating  factor,  (1-pt)γ,  is  added  to 
cross-entropy loss:

FL( p t)=−(1−p t)
γ log(p t) (41)

with the focusing parameter γ∈[0 ,5] .

 d) Database
The authors choose three database from PhysioNet:

1. MIT-BIH arrhythmia  database:  48 records  from 
47 patients of 30min and 360Hz;

2. INCART (St. Petersburg Institute of Cardiologi-
cal  Technics):  75  records  from  32  patients  of 
30min and 275Hz;

3. MIT-BIH supra-ventricular  arrhythmia  database: 
78 records of 30min and 128Hz.

The training was done for 250 epochs with a batch size 
of  100.  The  algorithm  for  gradient  descent  used  was 
Adam (learning rate 0.001).

 e) Results
The results of the three methods are shown in the follow-
ing tables, FL perform slightly better.

Table 7: classification performance Ventricular ectopic beats

Method Accuracy Sensitivity Specificity Precision

FL 99.2 95.0 99.7 96.9

CE 99.1 93.4 99.8 97.5

CERE9 99.1 94.0 99.7 96.6

Table 8: classification performance Supraventricular ectopic  
beats

Method Accuracy Sensitivity Specificity Precision

FL 98.7 69.8 100.0 99.1

CE 98.9 79.4 99.8 94.1

CERE 98.6 69.7 99.9 97.9

 3.8. STFT-based spectrogram and 
CNN
J.  Huang,  B.  Chen,  B.  Yao  and  W.  He[8] proposed  to 
transform the ECG signals  from the  time domain into 
two-dimensional  time-frequency  ECG spectrograms by 
short-time Fourier transform. The resultant ECG spectro-
grams were used as input to a deep learning network.

 a) Database
The  database  used  was  MIT-BIH  arrhythmia  database 
from PhysioNet.  Each recording was divided into seg-
ments of 10s and the sample rate was uniformly set to 
360Hz.

9 Cross-entropy with resampling
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 b) CNN
The network (Figure 38) is formed by 3 block of convo-
lution (ReLU) and max-pooling which transform the in-
put from (256×256×1) to (64×8×512), followed by a flat-
ten layer, a dropout, and 2 dense activation (ReLU, soft-
max).

Each ECG data recording was transformed into an ECG 
spectrum image through STFT and used as input for the 
network.

Figure 38: 2D-CNN using STFT-based spectrogram

 c) STFT

Figure 39: spectrogram data for type of beat

The short-time Fourier transform (STFT) is a Fourier-re-
lated  transform  used  to  determine  the  sinusoidal  fre-
quency and phase content of local sections of a signal as 
it  changes  with  respect  to  time.  ECG signal  record  is 
transformed into an image (256×256) of time-frequency 
spectrogram by using the STFT:

STFT {x [n]}=X (m,ω)= ∑
n=−∞

∞

x [n]w [n−m ]e− jωn
(42)

where  x[n] is the ECG signal, and w[n] is the Hanning 
window function:

w (n)={0.5[1−cos(2πn
M−1 )], 0≤n≤M−1

0 , else

(43)

In  Figure  39 a  sample  application  of  STFT  for each 
class’s spectrogram.

 d) Results
The results are shown in the following table.

Table 9: classification performance

Model Accuracy Loss

2D-CNN 0.9900 0.0414

 3.9. Gray-level co-occurrence ma-
trix enhanced CNN
W.  Sun,  N.  Zeng  and  Y.  He[9] proposed  to  employ 
GLCM10 for features vector description  of ECG signals. 
CNN approach is utilized to automatically recognize the 
arrhythmia  type  from  the  generated  3D  multi-scale 
GLCM.

 a) Database
In this research MIT-BIH arrhythmia database from Phy-
sioNet was used. 7 class was used:

1. Normal beat (C1);

2. Left bundle branch block beat (C2);

3. Right bundle branch block beat (C3);

4. Premature ventricular contraction (C4);

5. Fusion of ventricular and normal beat (C5);

6. Atrial premature beat (C6);

7. Paced beat (C7).

The last 6 class are shown in Figure 41-a).

 b) Multi-scale GLCM
The GLCM is a matrix defined for a digital image. The 
image value refers to the gray value of the specific pixel. 
The value can be any, from a binary number to a 32-bit 
value for a color image. Note that a 32-bit image gener-
ates a 232×232 matrix. A co-occurrence matrix measures 
the texture mapping of the image.

For an image with  p different pixel values, the  p×p co-
occurrence matrix C is defined over an n×m image I, the 
GLCM can be given by:

10 Gray-level co-occurrence matrix
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CΔx (i , j)=∑
x=1

n

∑
y=1

m

{1 , y (x )=i∧ y (x+Δx)= j
0 , else

(44)

with i, j are pixel values, and x is the spatial position in I 
and y the time domain signal, and Δx is the offset.

Figure 40: GLCM calculation process

Figure 41: a) six types of cardiac arrhythmias; b) GLCM for 
ECG signals (Δx=15)

 c) CNN

Figure 42: general architecture

For each of the 7 beats class the following steps are exe-
cuted to generate the input for the network:

1. Normalize the ECG signals so that the samples 
can be digitized with 7-bit resolution (range from 
0 to 127) with the following equation from signal 
X:

X́ =round(127∗
X−X min

X max− Xmin
) (45)

2. Extract  the  multi-scale  GLCM  feature  vector 
based of dimension 128×128×n (the authors sug-
gest n=36);

3. Divide the feature vector in train and test set.

As shown in  Figure 42 the general  architecture of  the 
network is composed by:

• A first convolution layer of 64 kernels (3×3) with 
ReLU followed by a max-pooling layer (2×2);

• A second convolution layer of  32 kernels (2×2) 
with ReLU followed by a max-pooling layer;

• A softmax layer.

 d) Results
The results for all classes are in the following table.

Class Precision Sensitivity F1

Normal beat 0.80 0.94 0.64

Left bundle branch 
block beat

1.00 1.00 1.00

Right bundle branch 
block beat 

0.95 0.86 0.90

Premature ventricular 
contraction

0.90 0.95 0.92

Fusion of ventricular 
and normal beat

0.95 0.95 0.95

Atrial premature beat 0.85 0.85 0.85

Paced beat 1.00 0.91 0.95

Mean 0.92 0.92 0.92

 3.10. Multi-scaled fusion of 
deep CNN
X. Fan, Q. Yao, Y. Cai, F. Miao, F. Sun and Y. Li[10] pro-
pose a multi-scaled fusion of deep convolutional neural 
network named MS-CNN.

 a) Database
The database used was Computing in Cardiology Chal-
lenge 2017 from PhysioNet, a collection of 8528 ECG 
records lasting from 9s to  61s,  labeled with 4 classes: 
normal rhythm, AF rhythm (9%), other rhythm and noisy 
recordings.  A cut-off  frequency  of  60Hz and  a  down-
sampling to 120Hz was applied. All the data was normal-
ized  with  Eq.  (17).  Because  the  data-set  is  relatively 
small, 10-fold cross validation was used.

 b) CNN
As in  Figure 43 the network consists of two streams of 
13-layer convolutional neural networks with different fil-
ter sizes in first four hidden layers and three fully con-
nected layers after them. The four hidden layers are com-
posed by 2 convolutional layers (with ReLU) of 64 fil-
ters, that increase by a factor of 2 after each max-pooling 
layer, until it reaches 512.
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The FC layers use the following loss function:𝓁 (x)=𝓁 CE( X)+λ∑
i =1

n

‖W i‖
2 (46)

where 𝓁CE is  the  cross  entropy  loss  function  and  λ a 
penalty factor.

The stochastic gradient descent was used, with batch size 
of  128,  initial  learning  rate  of  0.01  (with  exponential 
learning rate decay of 10 times every 300 epoch).

Figure 43: architecture of the 
MS-CNN

 c) Results
The input size that give the best result was 20s as shown 
in the following table.

Input 
length Sensitivity Specificity Precision Accuracy

5s 92.41 97.70 85.43 96.99

10s 94.31 98.22 88.55 97.72

20s 93.77 98.77 91.78 98.13

30s 89.92 98.83 91.38 97.75

 4. Results
Unfortunately, the various authors have sometimes used 
few performance metrics making it  not always easy to 
compare the various methods. Some solutions have given 
better results, demonstrating that the use of CNNs for the 
diagnosis of cardiac arrhythmias is feasible.

According to the results obtained, an app for smartphone 
for  cardiac  arrhythmias  diagnosis  can  be created.  This 
app can communicate via Bluetooth with a wearable ac-
tivity tracker (that includes heart rate monitoring) and it 
can signal  to  the user the probability of having cardiac 
arrhythmias. This can lead the user to make an accurate 
cardiological examination, and even anticipate the diag-
nosis by years, buying precious time to be treated.

The project would be great for all those young and no 
longer young people who practice sport, at amateur and 
ex-competitive level,  where medical  checks  are  not  so 
rigorous,  but  the efforts  made by the athletes  are very 
close to competitive levels.

Here there  is a summary of the performance of all the 
methods analyzed.

Method Acc. Sen. Spe. Prec. F1

Time-frequency analysis and CNN

STFT 96.7 96.5 99.7 96.3

CWT 95.3 94.7 99.6 94.8

PWVD 92.1 92.2 99.3 92.3

Lightweight CNN

RRI+FWS 97.5 97.8 97.2

Raw data 86.3 89.5 82.7

Multi-scale decomposition enhanced residual CNN

Raw 86.2 98.2 87.0

wp1
3 87.4 97.6 87.7

wp1
4 88.1 97.5 89.7

Dual heartbeat coupling based on CNN

VEB 98.6 93.8 99.2 92.4

SVEB 97.5 76.8 98.7 74.0
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Method Acc. Sen. Spe. Prec. F1

CNN with SVM

96.1 88.5 96.3

Deep CNN

End-to-end CNN 76.5 94.6

KNN 90.2 90.5

Linear SVM 87.6 87.1

Gaussian SVM 86.3 93.2

MLP 82.4 91.2

DCN with focal loss and image generation

FL 99.0 82.4 99.9 98.0

Method Acc. Sen. Spe. Prec. F1

CE 99.0 86.4 99.8 95.8

CERE 98.9 81.85 99.8 97.3

STFT-based spectrogram and CNN

1D-CNN 90.9

2D-CNN 99.0

Gray-level co-occurrence matrix enhanced CNN

92.0 92.0 0.92

Multi-scaled fusion of deep CNN

98.1 93.8 98.8 91.8

 5. References
1) Ziqian Wu, Tianjie Lan, Cuiwei Yang, and Zhenning Nie, “A Novel Method to Detect Multiple Arrhythmias 

Based on Time-Frequency Analysis and Convolutional Neural Networks”, IEEE Access, vol. 7, pp. 170820-
170830,  December 2019

2) Dakun Lai, Xinshu Zhang, Yuxiang Bu, Ye Su, and Chang-sheng Ma, “An Automatic System for Real-Time 
Identifying Atrial Fibrillation by Using a Lightweight Convolutional Neural Network”, IEEE Access, vol. 7, 
pp. 130074-130084, December 2019

3) Xin-cheng Cao, Bin Yao, and Bin-qiang Chen, “Atrial Fibrillation Detection Using an Improved Multi-Scale 
Decomposition Enhanced Residual Convolutional Neural Network”, IEEE Access, vol. 7, pp. 89152-89161, 
December 2019

4) Xiaolong Zhai, and Chung Tin, “Automated ECG Classification Using Dual Heartbeat Coupling Based on 
Convolutional Neural Network”, IEEE Access, vol. 6, pp. 27465-27472, June 2018

5) Zhangjun Li, Xujian Feng, Ziqian Wu, Cuiwei Yang, Baodan Bai, and Qunqing Yang, “Classification of Atrial 
Fibrillation Recurrence Based on a Convolution Neural Network With SVM Architecture”, IEEE Access, vol. 
7, pp. 77849-77856, December 2019

6) Bahareh Pourbabaee, Mehrsan Javan Roshtkhari, and Khashayar Khorasani, “Deep Convolutional Neural Net-
works and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients”, IEEE Transactions 
On Systems, Man, And Cybernetics: Systems, vol. 48, n. 12, pp. 2095-2104, December 2018

7) Mohamad  Mahmoud  Al  Rahhal,  Yakoub  Bazi,  Haidar  Almubarak,  Naif  Alajlan,  and  Mansour  Al  Zuair, 
“Dense Convolutional Networks With Focal Loss and Image Generation for Electrocardiogram Classifica-
tion”, IEEE Access, vol. 7, pp. 182225-182237, December 2019

8) Jingshan Huang, Binqiang Chen, Bin Yao, and Wangpeng He, “ECG Arrhythmia Classification Using STFT-
Based Spectrogram and Convolutional Neural Network”, IEEE Access, vol. 7, pp. 92871-92880, July 2019

9) Weifang Sun, Nianyin Zeng, and Yuchao He, “Morphological Arrhythmia Automated Diagnosis Method Us-
ing Gray-Level Co-Occurrence Matrix Enhanced Convolutional Neural Network”, IEEE Access, vol. 7, pp. 
67123-67129, June 2019

10) Xiaomao Fan, Qihang Yao, Yunpeng Cai, Fen Miao, Fangmin Sun, and Ye Li, “Multiscaled Fusion of Deep 
Convolutional Neural Networks for Screening Atrial Fibrillation From Single Lead Short ECG Recordings”, 
IEEE Journal Of Biomedical And Health Informatics, vol. 22, n. 6, pp. 1744-1753, November 2018

11) Vincenzo Piuri, “Intelligent Systems”, lecture notes, Università degli Studi di Milano, 2003

12) Nicolò Cesa-Bianchi, “Statistical Methods for Machine Learning”, lecture notes, Università degli Studi di Mi-
lano, 2019

13) Nicola Carbonaro, “Natural and Artificial Senses”, lecture notes, Università di Pisa, 2019



M. Maione – Study on the use of convolutional neural networks for the diagnosis of atrial fibrillation 19 / 19

 6. Web references
a) Wikipedia contributors, “Electrocardiography”, Wikipedia, The Free Encyclopedia, 2020, 

http://en.wikipedia.org

b) Wikipedia contributors, “Cardiovascular disease”, Wikipedia, The Free Encyclopedia, 2020, 
http://en.wikipedia.org

c) Wikipedia contributors, “Arrhythmia”, Wikipedia, The Free Encyclopedia, 2020, http://en.wikipedia.org

d) Wikipedia contributors, “Atrial fibrillation”, Wikipedia, The Free Encyclopedia, 2020, http://en.wikipedia.org

e) Wikipedia contributors, “Pan–Tompkins algorithm”, Wikipedia, The Free Encyclopedia, 2020, 
http://en.wikipedia.org

f) Wikipedia contributors, “Stochastic gradient descent”, Wikipedia, The Free Encyclopedia, 2020, 
http://en.wikipedia.org

g) MIT Learning, “MIT Deep Learning 6.S191”, 2020, http://introtodeeplearning.com

h) Towards Data Science, “Gentle Dive Into Math Behind Convolutional Neural Networks”, 2020, 
http://towardsdatascience.com

i) Scikit-learn documentation, “Scikit-learn: machine learning in Python”, 2020, http://scikit-learn.org

http://en.wikipedia.org/
https://scikit-learn.org/
https://towardsdatascience.com/
http://introtodeeplearning.com/
http://en.wikipedia.org/
http://en.wikipedia.org/
http://en.wikipedia.org/
https://en.wikipedia.org/
https://en.wikipedia.org/

