Maione Michele (931468)
michele.maione@studenti.unimi.it
=
£¥ Folie

A library (in C++/CLI) for Unity that simulate intelligences
for volleyball games.

mailto:michele.maione@studenti.unimi.it

Index
Analysis
Volleyball rules
Game rules
Set rules
Goals
Future developments
Missing items

Other engines

Design
Entities
Game
Mealy machine
Implementation

SM
State
SMEnumerator
Transition

Team

Player

Behavior tree
IBTNode
BT
BTQuestion
BTAction
BTComposite
Rally
Decision tree
IDTNode
DT

Attack scheme

O W 0 0 N N o o o o1 g~ M DM BN MDD

10
10
10
10
10
10
11
11
12
13
13
13

Defence scheme
Hit the ball
Ball
Other classes
A demo game in Unity
Level
Stadium
Field
Navigation mesh
Players
Version control

Information

14
14
15
15
16
16
16
16
17
17
18
18

Volleyball rules

Game rules

A volleyball court is 9mx18m, divided into equal square halves by a net with a width of one meter. The top
of the net is 2.43m above the center of the court for men's competition, and 2.24m for women's
competition; each assigned to one of the two teams.

Each team consists of a maximum of 12 players, of which 6 are holders; one of the players can be
designated as Libero, who has the right to temporarily replace one of the defenders without limitations on
the number of substitutions.

The game is divided into sets: a team wins the victory of a set on reaching the 25 points, as long as it has at
least two advantages; otherwise, the set continues until one of the two teams gets the 2 points of
advantage needed.

The game ends when a team wins 3 sets.

Set rules

Each action begins with the service performed by the player in the position 1, of the team that obtained the
right. The action continues until the ball touches the field, or is sent out of it. The team that wins a game
action wins a point and the right to serve.

For each game action, the team has 3 touches available (excluding the possible touch of the wall), to send
the ball into the opposing field by passing it inside the passage space. After making a wall, a player can hit
the ball again without incurring a double-touch foul and making the first team touch.

In the event that the ball touches the net and comes back, it can be replayed within the limits of the touches
available to the team”.

Goals

The artificial intelligence need manage:

e Movement: individuals, realistic, using physical simulation.
e Decision making:
Possible actions: set, receive, pass, attack, block, serve, move;
o Distinct states: looking at the ball, active, take position, take the ball;
o Behaviour change: ball position, touch count;
o Need to look ahead: ball destination, touch count.
e Tactical and strategic Al:
o Characters think for themselves and display a group behaviour:
m Strategy: serve-receive system, offensive system, coverage system, defensive
system,
m Formation: "4-2","6-2" and "5-1".

o

" http://en.wikipedia.org/wiki/Volleyball

Future developments

Missing items

Items that are missing:

An algorithm to calculate all the parabolas of a projectile motion;

Skills: block, dig;

Formations: “6-2";

Attack by jumping forward;

Spikes types: hard-driven, off-speed, standing, open hand tip;

Tipping types: dink, power tip;

Settypes: 1,2,3,4,5,6,7,9,10, 32, BS, shoot, flare, slide, iso, tandem, double quick, x.

Other features: sit on the bench, replace a player, salute, shake hands, interact with the referee, get
hurt.

Other engines

The decision to encode a series of algorithms to simulate intelligences for a volleyball game is due to the
fact that there aren't a lot of volleyball games on the market.

| chose to implement it as a library in C++ to make it reusable in the future. The current version was
designed to be used in Unity, but was also designed to be adaptable to other engines.

Entities

The project manage 4 entities: game, team, player and ball. Each class inherit from , SO that
public properties can be set directly via the editor.
Entities J
Game Ball
+ pall: Ball + destination3D: Vector3

+ feamA: Team

+ teamB: Team

- currentServingTeam: Team
- receivingTeam: Team

- tfeamAPoints: Ulnt16

- feamBPoints: Ulnt16

- teamASetsWin: Ulnt16

- tfeamBSetsWin: Ulnt16

+ hit(pos: ePosition, error; float)
+ fourHitFault()

+ doubleHitFault()

+ ballOnTheFloor()

+ stariTheGame()

+ stopTheGame()

- playersTakePositionsCOnTheField{)
- arePlayersinPosition(): bool

- sene()

+ pointhMade(player: Player)

- isSetEnded(): boaol

- checkingSetScore()

- isGameEnded(): bool

- checkingSets\Won()

&

Player

+ name: String
+ role: eRole
+ starting Position: ePosition

2

Team

+ name: String
- touch: Ulnt16

+ playersTakePositionsOnTheField()
+ playersTakePositionInReception()
+ arePlayersinPosition(): bool

+ moveToNextPosition()

+ 5erve()

+ rotateOnCourt()

- getCurrentCourt(). eCourt
+ moveTo(pos: ePosition)

+ moveTolarea: efrea)

- moveToBallFallPosition()
- isBallFlyingToMyPaosition(): bool
- isBallinMyCourt(): bool

- passi)

- zetl)

- attack()

- block()

- chooseTarget(): ePosition
- takeDefenceScheme()

- takeAttackScheme()

Game

For the game logic it was created the class that implement a Mealy machine?.

2 Mealy, George H. (1955). A Method for Synthesizing Sequential Circuits. Bell System Technical Journal. pp.
1045-1079.

Mealy machine

The implemented version of the finite-state machine used for the game logic is the Mealy machine, for the
necessity to use inputs for actions.

game J ;""\
& @-
end

start

[game ended]

[not (game ended]]]
checking sets

won

[staried]

[set ended)

D|EE-"EF®{ checking set

Positions On
J score
The Field [not (set ended)]

[players in position] poind made]

[senved]
ralhy

Y

senve

Implementation

There are 3 classes relative to the machine: ; ;

And 2 classes that connect the machine to the Unity coroutine system: ;

Mealy r-.’lachine)

SM Transition
+ current Staie + fromState: State
—m| + sfates: HashSet=State= + toState: State o

+ condition: Func=bool=
+ waiter: IEnumerator

+ runito_: State)

=Y

State

W

+ name: String
+ monoBehaviour: MonoBehaviour
+ enterAction: Delegate

¥ + fransition: Transition

______________ + callback_function: Delegate

))] + enterParameters: array=0hject>
ainterfaces ginterfaces + xitAction: Delegate
IEnumerable IEnumerator + exitParameters: aray=Object=
& & + transitions: Hash3Set<=Transition=
! |
i ! T
: i
i
[Enteiot s ! !
i
] SMEnumerator
!
i

SMEnumerable

+ smEnumerator: SMEnumerator (to - Statel
+ run(to_: State)

SM

In the method the class, executes in the following order:

1. Call the enter action;
2. For each transition of the current state:
o Ifa is present:
i. Callthe coroutine ();
ii. Call the exit action.
o Otherwise:
i If is null or true, call the run method ();
ii. Call the exit action.

State

The only thing to note for this class is the array of input (,) for enter action
and exit action.

SMEnumerator

implements . When the reach the end it call that
is a pointer to the function , in this way the machine goes to the next state.

Transition

The important things in this class are:

e In the field a pointer to a function that makes the machine continue to the next state
() only if the function returns a positive result;

e In the field a pointer to an that is the parameter for the function ,
used to call boolean functions;
For example:

SM = new SH(this) ;

5_stopTheMatch = SM-»addState(new Action({stopTheMatch)}) ;

5 rally = SM-zaddState();

5 checkingSetsWon = SM->addState (new Action (checkingSetsWon)):

5 checkingSetScore = SM->addState (new Action(checkingSetScore));
5 _serve = SM->addState(new Action(serve)):

5 playersTakePositionsOnTheField = SH-»addState(
new Action(playersTakePositionsOnTheField),
new Func<bool>{arePlayersInPosition),

5 _serve

ks

5 startAl1UnityEntities = SM->addState |
new Func<bool>({started),
new Action({startTheMatch),
5_playersTakePositionsOnTheField

}:

5 _receivingTeamRotateOnCourt = SM-zaddState (
new Func<bool>({started),
5_checkingSetScore

}:
5_serve-raddTransition(5_serve, 5_rally);

5_rally-=addTransition(5_rally, 5_checkingSetScore);
5 rally-zaddTransition(5_rally, 5_receivingTeamBRotateCmCourc) ;

5_checkingSetScore-»addTransition(new Transition|(
5 _checkingSetScore, new Func<bool>(isSetEnded), 5 _checkingSetsWon
Y1z
5 _checkingSetScore-»addlransition(new Transition|(
5 _checkingSetScore, new Func<bool>({isNotSetEnded), 5 playersTakePositionsOnTheField
Y1z

5_checkingSetsWon->addTIransition(new Transition (
5 _checkingSetsWon, new Func<kool>(isGameEnded), 5 stopTheMatch
Yy:
5_checkingSetsWon-=addTransition(new Transition(
5_checkingSetsWon, new Func<kbool>(isHNotGameEnded), S5 playersTakePositionsOnTheField

¥y :

Team

For the team it was created the class , it's called by the class ; It say to all the players:

e To take positions on the field;
e Torotate on court.

Player

For the player it was created the class that use a behavior tree® and three decision trees®.

Behavior tree

The B.T. is implemented using 7 classes and 1 interface.

Behavior tree J

BT Sequence BT Selector
| Extends Extends |
BTComposite BTinverter

childrens: LinkedList=IETMode= |

i Extends
v
==nfamace== BTAction
IETNode
g g action: Delegate
+ Execute(): bool - params: array=0bject*=
L
E BTQuestion
BT - boolFN: Delegate
i3 : - params: aray=0hject=
oL e - trueValue: Object

IBTNode

Is the interface that expose the method that return a boolean value indicating if the
operation was executed successfully.

BT

Is the root node.

BTQuestion
Implement a parameterized function.

BTAction

Implement a parameterized action.

% Millington, I., & Funge, J. (2009). Artificial Intelligence for Games(2nd ed.). Morgan Kaufmann.
4 Kaminski, B.; Jakubczyk, M.; Szufel, P. (2017). "A framework for sensitivity analysis of decision trees". Central
European Journal of Operations Research. 26 (1): 135-159

BTComposite

It's an abstract class, it's used to implement control flow nodes. It's extended by

Rally

This behavior tree takes into account the role and the court in which the player is to take decisions.

rally J

ball is flying?

[|s6_1

(2)at

52

look at target

G s

54_1

ook at the

ball

defence take position
phaze? in reception
can | hit the
ball?

56_2

54_2

enable nav
agent

look at enemy

hit the ball

an | reach the
ball jumping?

563

jump

ball is in my
area?

s6_4

move to attack
position

56_5

I'm not
jumping?

move to pre-

attack position

Rally B.T.

and

BT rally = new BT (gl) -,

gl->AddChildren(s2) ;
gl->addChildren{new BTAction({new Action(lookAtTarget}}} s

s2->»AddChildren {new BETQuestion(new Func<bool>{Served))})
82->AddChildren {g3) ;

g3->RddChildren(s4 1)
g3->RddChildren(s4 2}

54 1->AddChildren(new BTQuestion(new Func<bool>(ballIsFlying)}}:
54 1->AddChildren({new EBETAction(new Action<bool>({lookAtTheBall), trume)):
54 1->AddChildren{g53)

=4
=4

_2->hddChildren({new BTAction(new Action<bool>({lookAtTheBall), false)):
_2->hddChildren(new BTAction(new Action(Enablelgent)});
g5->hddChildren{s6 1)

gS—->AddChildren(s6 2} ;

gS—->AddChildren(s6_3) ;

g5->AddChildren(s6_4);

d5->AddChildren (sé6_5) ;

56 _1->AddChildren({new BTQuestion (new Func<eGamePhase>(getGamePhase), eGamePhase: :defence));
56 _1->AddChildren(new BTAction(new Action(playerTakePositionInReception)))

=6
=6

>*AddChildren{new BTQuestion(new Func<bool>(ballIsReacheable)}}
>AddChildren{new BTAction{new Action{hitTheBall)}} s

2
2
56_3-»AddChildren{new BTQuestion(new Func<kool>({canIReachTheBallJumping)))

56 _3->AddChildren(new EBETAction(new Action<bool>(setJumping), true)):;

56_4->AddChildren(new BTQuestion(new Func<bool>(isBallInMyhrea))}):
56 4->RddChildren(new BTAction(new Action(takeCorrectPositionInfAttackMode)))

56_5->AddChildren(new BTQuestion(new Func<bool>(iAmJumping), false)):
56 5->AddChildren(new EBETAction(new Action(takeCorrectPositionPrelttack)}):;

Rally B.T. instantiation

Decision tree

Three decision trees were designed to manage: the defense scheme, the attack scheme, and the game
fundamentals (pass, set, attack).

Decision free J

==[nferface==
IDTNode

+ Execute()

A

DT =T=

- decisions: Dictionary=T, IDTNode=

- notDecisions: Dictionary=T, IDTHNode=
- test: Delegate

- testParams: array=0bject=

IDTNode
Is the interface that expose the method that execute a node.
DT
The procedure calls:
1. : that is a delegate for a parametrized function;
2. If the dictionary contain the result
a. Callthe procedure of the in this dictionary entry;
3. Otherwise:
a. For each element of that is different from
i. callthe procedure of the in this dictionary entry.

Attack scheme

take attack scheme)

outside hitter

ter opposite
middle blocker libero

LHEE MEEE-

outside hitter

Defence scheme

take defence scheme)

ron

cutside hitier setter

middle blocker

-HEE-

opposite outside hitter

lisero
¥

-HEE-

Hit the ball

hit the ball)

ball is reachesable?

an i reach the ba
jumping?

s

libero /
setter

jump sef

oufside hitfer /
middie blocker /
opposite

¥

attack

DT hitTheBall = new DIT<kocl>(new Func<kocl>(ballIsReacheable}) !
DT getTouch = new DT<UIntlé>(new Func<UIntlé>(getTouch)):

DT getRole = new DT<eRole>(new Func<eRole>{getRole});

DT pass = new DT<Chject®>(new Action(pass)}

DT_set

new DT<Chbject®>(new Action(set)}

DT attack = new DI<Chject®>(new Acticn(attack)}:

DT canIReachTheBallJumping = new DI<kocl>(new Func<kocls>(canIReachTheBallJumping)) ;
DT setJumping = new DT<Chject®>(new Action<bool>(setJumping), true):

DT hitTheBall-»addDecision(true, DT_getTouch) ;
DT _hitTheBall-»addDecision(false, DT_canIReachTheBallJumping) ;

DT getTouch-»addDecision{J, DI_pass);
DT getTouch->addDecision{l, DT _getRole);
DT getTouch->addDecision({Z, DI_attack):

DT getRole-»addDecision(eRole: :Libero, DT set);
DT getRole-»addDecision(eRole::Setter, DT set);

DT getRole-»addDecision(eRole: :OutsideHitter, DT attack):
DT getRole-»addDecision(eRole: :MiddleBlocker, DT attack):
DT getRole-»addDecision(sRole: :Opposite, DT attack):

DT canIReachTheBallJumping-»addDecision(true, DT setJumping)

Ball

For the ball it was created the class that manage:

Collisions: via the procedure ;
Trajectory: via the procedure

Other classes

Other classes that were developed are:

: global and general functions;
: global static reference to game, ball, teamA, teamB;
: all the enumerators;
: a job to enqueue;
: for job queuing, via coroutine. It's similar to ;
: implements and it's used by ;
. inherits and it's used to wait for an amount of milliseconds

by coroutine.

A demo game in Unity

Level

For the design of the level of this demo, different free assets have been downloaded from the internet.

Stadium

Stadium

Field

Game field compared to the size of the stadium

17118

Players lined up off the court

Navigation mesh

To move the players in the field the Unity navigation system (NavMesh) was used.

2 Navigation

[Agents [areas Object |

Learn instead about the component workflow.

Step height should be less than agent height.
Clamping step height to 0,16 intemally when baking,

Unity NavMesh

Players

By importing the Folie plugin into the Unity project it's possible to set all the public properties for the game,
the team, and the players.

The most important ones are those of the players. Based on the roles of the players, Folie implements
different game strategies.

Player properties

Version control

The web-based hosting service for version control that was used is GitHub.

For changes and access requests contact the administrator.

Information

Url: https://qithub.com/mikymaione/Folie

Administrator: Michele Maione (mikymaione@hotmail.it)

https://github.com/mikymaione/Folie
mailto:mikymaione@hotmail.it

