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Summary – This paper is trying to answer the 

question which the best regression model is to 

predict the median house price. The Hedonic the-

ory is exploited and models as the Ridge and the 

Lasso regression are used on a cross-sectional da-

taset of housing prices available at this link: 

https://www.dropbox.com/s/zxv6ujxl8kmijfb/cal-

housing.csv. Applying the nested cross-validation 

we estimate the hypermeters and generate the 

best hyperparameter, then evaluate the model via 

K-Fold cross-validation. PCA is implemented to im-

prove the risk estimator. In Section 1 we introduce 

the problem of housing prices in the U.S. and the 

approach used in this work. Section 2 is dedicated 

to the literature about regressions in predicting 

the price of real estates and in Section 3 the theo-

retical notations are clarified to simplify the un-

derstanding of the concepts. Our experiment is 

described in section 4 and Section 5 provides the 

consequential critical comments and evaluations. 

 
1 annaolena.zhab@studenti.unimi.it – 960298. 
2 michele.maione@studenti.unimi.it – 931468. 
3 Santarelli, 2020. 
4 Source: International Investor Survey. 

1. Introduction and description of the 

problem 

The Hedonic theory identifies the attributes as im-

plicitly embodied in goods and their observable 

market prices, so extending this concept to the 

housing prices we can see the attributes as the 

house’s characteristics that are determinant for 

the final value. The Hedonic model exploits the 

consumer theory and her willingness to pay de-

pending on the utility gained from the bundle of 

aggregated attributes.  

Our work starts from a real problem of housing 

prices in the United States, where the economical 

purposes and the low mortgage rates incentive a 

solid and hot real estate market3. Indeed, the U.S. 

is one of the most stable and secure countries for 

real estate investment in recent years4. It is esti-

mated that household wealth is nearly 50% in-

vested in real estate and the owner-occupied 

https://www.dropbox.com/s/zxv6ujxl8kmijfb/cal-housing.csv
https://www.dropbox.com/s/zxv6ujxl8kmijfb/cal-housing.csv
mailto:annaolena.zhab@studenti.unimi.it%20-
mailto:michele.maione@studenti.unimi.it
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housing rate in July 2019 was about 63.5%5. How-

ever, the U.S. real estate market was not always as 

reliable as today, indeed the sudden bubble of the 

housing market of 2006-2007 preceding the Great 

Recession and its subsequent burs is clear evi-

dence of the system weaknesses. The speculation 

on the housing prices and their extremely high val-

ues is due to the lack of information caused by the 

manipulations of major players in the real estate 

sector6. For these reasons, the task of predicting 

the value of a house becomes crucial, as the con-

structed house price model can influence eco-

nomic growth and improve the efficiency of the 

real estate market. An accurate prediction model 

is significant and helps to fill up an information gap 

for the prospective homeowners, policy-makers 

and other real estate market participants, such as 

mortgage lenders and insurers7. Modelling house 

prices presents some issues, for example, the me-

dian value might be extremely influenced by the 

value of the sold properties in the area with similar 

characteristics8 or the prediction could become 

wrong due to exogenous factors influencing the 

prices. Indeed, the economic health reflects in the 

market according to the supply and demand law 

so any shock will affect the current prices. Moreo-

ver, working on a large dataset, like the one used 

in this work, can lead to the so-called multicolline-

arity of the features which tend to overfit when it 

comes to implementing the algorithm predicting 

the value. The classic OLS regression has the de-

sired property of being unbiased, but it can suffer 

from overfitting and have a huge variance in those 

cases where features are highly correlated. To pull 

down the variance and obtain more biased estima-

tor a regularization technique is necessary. The fo-

cus of this paper is therefore on two regularization 

techniques, the Ridge and Lasso regression. The 

Ridge regression9 is a useful tool for improving 

prediction in regression tasks with highly corre-

lated predictors. Lasso regression is also used to 

handle high dimensional databases where the fea-

tures are correlated, and this technique shrinks 

some of them to zero, performing a feature selec-

tion with a consequent dimension reduction. Both 

 
5 Source: United States Census Bureau. 
6 Oladunni, Timothy & Sharma, Sharad, 2016. 
7 Limsombunchai et al. (2004). 

methods act on the coefficients by introducing a 

penalty on them to make more effort to the most 

informative ones, this way minimizing overfitting 

of the data and solving the multicollinearity prob-

lem. The impact of each attribute on the predicted 

price is given by the value of the coefficient, higher 

coefficients mean higher influence. The penalty is 

the tool through which we perform the regulariza-

tion, also called tuning parameter, which controls 

the bias-variance trade-off, and its selection is cru-

cial. For choosing the regularization parameter in 

practice, nested-cross-validation is widely used. 

2. Most important related works 

Many works have been developed to predict the 

median house value with models of different com-

plexity [see Manjula et al., 2017]. The concept of 

Hedonic prices was developed by Rosen (1974), 

however the first implementing the Hedonic 

model to the house sector was Lancaster (1966). 

Griliches (1971) provided the reading of a com-

modity, such as a house, as an aggregation of indi-

vidual components or attributes. Timothy 

Oladunni & Sharad Sharma (2016) and Limsom-

bunchai et al. (2004) have showed that the price 

of a property is predictable exploiting the Hedonic 

theory, comparing the Hedonic regression in com-

parison with other algorithms. Dubin (1998) has 

developed a work to predicted house prices using 

MLS data, even though exploiting different algo-

rithms for the prediction, such as kriging algorithm 

to create an accurate spatial interpolation of 

house prices. Others as Xin and Khalid (2018) have 

used Ridge and Lasso regression to deal with mul-

ticollinearity of features on a time series database 

for predicting the housing price. Hoerl and Ken-

nard (1970) firstly introduced the Ridge regression 

as biased estimator for non-orthogonal problems. 

The asymptotic properties of Ridge have been 

widely studied, [see for e.g. Dobriban and Wager 

(2018), Dicker (2016)]. For the validation approach 

we refer to the cross-validation which biased esti-

mation of the error is known [Hastie et al. (2009)], 

8 The so-called sales comparison approach. 
9 Introduced by Hoerl and Kennard (1970). 
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since it uses a smaller amount of data than the en-

tire dataset10. However, we can apply a bias-con-

trol, see Liu and Dobriban (2020), for example via 

K-Fold cross-validation, see Ray (2018), since there 

is an inverse relation between the k size and bias, 

if the first grows the latter goes down. Mishra et 

al. (2017) have clearly explained the intuition be-

hind the PCA and the underlying algebra to rich 

these results. PCA was introduced by Pearson 

(1901) and Hotelling (1933) and it is largely used in 

a lot of fields.  Gupta and Kabundi (2010) have im-

plemented Lasso, Ridge and PCA to predict hous-

ing prices on a time series dataset, so they could 

control for the economic stochastic shocks.  

3. Notation and relevant definitions -

Regression  

The goal of the regression is to generate a predic-

tion ŷ = f(w, x) such that the loss function ℓ(y, ŷ) 

is small for most data points x ∈ 𝒳, where ŷ ∈ 𝒴 

is the prediction from the labels set 𝒴 ⊆ ℝ, w ∈

ℝ𝑑 is the coefficient vector and 𝒳 = ℝ𝑑 the data 

domain; the prediction mistakes are a function of 

the difference |y − ŷ|. 

3.1. Hedonic model 

Following the Hedonic theory, the housing price 

can be written as a function 𝑓(. ) in the following 

way: 

𝑃𝑖 = 𝑓(𝑠) (1) 

where 𝑠 is the vector of all the objective attributes 

and 𝑃𝑖 is the price of the 𝑖𝑡ℎ element of the data 

matrix 𝒳. In this case, the price (our target varia-

ble) is a function of: 

• longitude, 

• latitude, 

• housingMedianAge, 

• totalRooms, 

• totalBedrooms, 

• population, 

• households, 

• medianIncome, 

 
10 In other words, the algorithm has not enough data to 
train on and can be approximated. 

• medianHouseValue, 

• oceanProximity. 

3.2. Loss function 

With loss function we denote the measure of how 

different the prediction of a hypothesis is from the 

true outcome. We use a nonnegative loss function 

to measure the discrepancy ℓ(𝑦, 𝑦̂) between the 

predicted label 𝑦̂ and the true label 𝑦. In the re-

gression task we define the quadratic loss that is 

the squared distance between 𝑦 and 𝑦̂  

ℓ(𝑦, 𝑦̂) = (𝑦 − 𝑦̂)2 (2) 

when 𝑦̂  =  𝑦 then ℓ(𝑦, 𝑦̂) = 0 otherwise If 

𝑦̂ –  𝑦 = 𝑐, ∀ 𝑐 ∈ ℝ+ and c is large then also 

ℓ(𝑦, 𝑦̂)  tend to be large. The mean of the squared 

error (MSE) will be used in the experiment.  

3.3. Test error and training error  

The split of dataset into two separate subsets is 

necessary in order to have some fresh data to es-

timate the predictive power of the algorithm.  The 

dataset is divided in n elements for the test, and m 

elements for the training. Indeed, the validation is 

given by the test error which is: 

1

𝑛
∑ ℓ

𝑛

𝑡=1

(𝑦𝑡
′ , 𝑓(𝑥′𝑡

 
))  (3) 

The validation is done over a fitted predictor in the 

training set, and its power is given by the training 

error:  

ℓ̂(𝑓) =
1

𝑚
∑ ℓ (𝑦𝑡, 𝑓(𝑥𝑡))

𝑚

𝑡=1

 (4) 

Total error is given by three elements: 

• variance, 

• bias,  

• irreducible error. 
The main idea is to derive a trade-off between the 

bias and variance, in order to optimize them both. 

More complex models present high variance and 

low bias since they fit good the true data but gen-

eralize worst. 
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3.4. Empirical Risk Minimization (ERM) 

The Empirical Risk Minimization is a learning algo-

rithm which returns some predictors f given a set 

of predictors ℱ, that minimize the training error, 

given a non-negative real-valued loss function ℓ̂ : 

𝑓̂ ∈ argmin
𝑓∈ℱ

ℓ̂(𝑓) (5) 

3.5. Statistical risk, Bayes optimal predictor 

and Bayes optimal risk  

We use statistical learning to introduce the notion 

of expectations in estimating the loss since we 

need to assume the independence between the 

variables and the predictor we generate is based 

on this assumption. Let ℎ ∶ 𝒳 → 𝒴 be the predic-

tor that maps data points to labels. The statistical 

risk is then defined as the expectation of the loss 

function among 𝐷, the distribution from where 

the random sample of data points and labels were 

drawn:  

ℓ𝐷(ℎ) = 𝔼[ℓ(𝑌,ℎ(𝑥))] (6) 

where ℎ(𝑥) is the predicted 𝑦̂.  We then define the 

Bayes optimal predictor as the function 𝑓∗ which 

minimize the overall training error ℓ𝐷(ℎ), given 

the conditional probability among all predictors 

given that our data point is 𝑥:  

𝑓∗(𝑥) = argmin
𝑦̂∈𝑌

𝔼[ℓ(𝑌, 𝑦̂) | 𝑋 = 𝑥] (7) 

 
11 By taking the derivative w.r.t  𝑦̂ , since 𝑓∗(𝑥) is differ-
entiable. 

The Bayes optimal risk is the expectation over the 

loss function of the Bayes optimal predictor and 

following the same logic as before we have that 

the Bayes risk is smaller than the other risks:  

𝔼 [ℓ (𝑌, 𝑓
∗
(𝑥)) |  𝑋 = 𝑥] ≤ 𝔼[ℓ(𝑌,ℎ(𝑥)) | 𝑋 = 𝑥](8) 

Coming to our regression problem with the 

squared loss, the Bayes optimal predictor is: 

𝑓∗(𝑥) = argmin
𝑦̂∈𝑌

𝔼[(𝑌− 𝑦̂)2 |  𝑋 = 𝑥] (9) 

minimizing this quantity11, we have: 

𝑓∗(𝑥) = 𝔼[𝑌 | 𝑋 = 𝑥] (10) 

and the Bayes risk becomes the expectation of (6): 

𝔼 [(𝑌 − 𝑓∗(𝑋))
2
 |  𝑋 = 𝑥] = Var[𝑌 | 𝑋 = 𝑥] (11) 

3.6. Regressions – Linear, Ridge, Lasso 

Ridge and Lasso regression modify the standard 

linear regression by introducing a positive con-

stant as regularization parameter. Indeed, the ob-

jective function to minimize under these solutions 

is RSS12 + penalty, and the penalty differs for the 

two methods. Starting from the classical linear 

model we have: 

𝑦𝑖 = x𝑖
⊤𝑤 (12) 

let be the data domain 𝒳 = ℝ𝑑 and 𝑥 =

(1, 𝑥1, … , 𝑥𝑑)13 a row vector of 𝒳. The linear pre-

dictor is a linear function ℎ ∶ ℝ𝑑 → ℝ , and for an 

activation function  𝑓:ℝ → ℝ we can write as fol-

lows: 

ℎ(𝑥) = 𝑓(𝑤⊤𝑥) (13) 

where 𝑤 ∈ ℝ𝑑 and 𝑤⊤𝑥 = ∑ 𝑤𝑖𝑥𝑖
𝑑
𝑖=1  . 

The ERM to (𝑥1, 𝑦1)⋯ (𝑥𝑚, 𝑦𝑚) is 

𝑤̂ = argmin
𝑤∈ℝ𝑑

∑(𝑤⊤𝑥𝑡 − 𝑦𝑡)
2

𝑚

𝑡=1

(14) 

12 Sum of the squared residuals used for the classical 
OLS. 
13 Add one extra feature to stabilize the prediction. 

Figure 1 - the optimal choose for trade-off. Source: re-
searchgate.net 

https://en.wikipedia.org/wiki/Risk_(statistics)
https://en.wikipedia.org/wiki/Expected_value
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Since we can rewrite these terms in vector nota-

tion, we have for 𝑣 = (𝑤⊤𝑥1, … , 𝑤
⊤𝑥𝑚) the vec-

tor of predictions and 𝑦 = (𝑦1, … , 𝑦𝑚) the vector 

of real labels and for 𝑣, 𝑦 ∈ ℝ𝑚, then: 

∑(𝑤⊤𝑥𝑡 − 𝑦𝑡)
2

𝑚

𝑡=1

= ‖𝑣 − 𝑦‖2 (15) 

In matrix notation we have 𝑆 the design matrix  

𝑆 ∈ ℝ𝑚×𝑑 with 𝑑 features and 𝑚 observations 𝑥𝑖
  

that are rows of 𝑆⊤, and therefore the vector be-

comes 𝑣 = 𝑆𝑤.  Applying the ERM we derive 

𝑤̂ = argmin
𝑤∈ℝ𝑑

‖𝑆𝑤 − 𝑦‖2 (16) 

The solution to the ERM is the minimization of this 

convex function 𝐹(𝑤) = ‖𝑆𝑤 − 𝑦‖2 using the Eu-

clidean norm. To solve the problem in linear re-

gression we can use the closed form solution, or 

the gradient descend. 

If 𝑆⊤𝑆 is a non-singular matrix14, and the condi-

tions of the general position holds, the solution of 

the ERM is the closed form:  

𝛻𝐹(𝑤) = 2𝑆⊤(𝑆𝑤 − 𝑦) = 0 (17) 

𝑤̂ = (𝑆⊤𝑆)−1𝑆⊤𝑦 (18) 

In some cases, the linear regression performs well 

on the training data, having a low bias, but it gives 

a non-accurate estimate on different data. The 

reason why it occurs it is because of multicolline-

arity of the prediction vectors (as known as non- 

orthogonality)15 . More in general with 𝑑 large or 

𝑛 small, the risk that the model can overfit16 the 

data is high. The OLS estimator 𝑤̂ therefore is un-

biased but have a huge variance and it is not sta-

ble. To overcome this problem, Ridge and Lasso re-

gression help to prevent over-fitting which results 

from simple linear regression. We introduce a reg-

ularized parameter 𝛼 which adds some bias17 

whereas pushing the variance down. This also con-

trols the model complexity, indeed the value of 𝛼 

has a direct relation with the complexity. This oc-

curs to find the best trade-off between bias and 

 
14 This happens if the data points span 𝑚 ≥ 𝑑. 
15 Hoerl and Kennard, 2010. 
16 Overfitting: the algorithm performs very good on 
training data but cannot be generalized to a new bunch 
of data. 

variance to get to that sweet spot for having good 

predictive performance18. The two methods work 

similarly but lead to different results, this happens 

because of the divergent formulas.  

3.6.1. Ridge solution 

Ridge regression uses the penalty multiplied by 

the square of the magnitude of the coefficients, 

also known as L2 regularization. 

The ERM of Ridge regression is 

𝑤̂𝛼 = argmin
𝑤∈ℝ𝑑

‖𝑆𝑤 − 𝑦‖2 + 𝛼‖𝑤‖2 ∶  ∀𝛼 > 0(19) 

for 𝛼 → 0, 𝑤̂𝛼 → 𝑤̂ so the solution leads to the lin-

ear regression, for 𝛼 → ∞ the coefficient tend to a 

zero vector and the line becomes flatter, shrinking 

the linear regression solution towards to zero. 

To optimize the objective function, we take the 

gradient as before and solve for 𝑤 to find a suita-

ble value: 

𝛻𝐹(𝑤) = ‖𝑆𝑤 − 𝑦‖2 +  𝛼‖𝑤‖2 (20) 

2𝑆⊤𝑆𝑤 − 𝑆⊤𝑦 + 2𝛼𝑤 = 0 (21) 

(𝑆⊤𝑆 + 𝛼𝐼)𝑤 = 𝑆⊤𝑦 19 (22) 

The new estimated parameter becomes: 

𝑤̂𝛼 = (𝑆
⊤𝑆 + 𝛼𝐼)−1𝑆⊤𝑦 (23) 

This is the so called closed-form solution and 𝛼 is 

the one measuring the stability of the procedure.  

3.6.2. Lasso solution 

Least Absolute Shrinkage and Selection Operator, 

or simply Lasso, is slightly different from the pre-

vious because the penalty is multiplied by the ab-

solute value of the magnitude of coefficients, also 

known as L1 regularization 

𝑤̂𝐿𝑎𝑠𝑠𝑜 = argmin
𝑤∈ℝ𝑑

‖𝑆𝑤 − 𝑦‖2 + 𝛼|𝑤| ∶  ∀𝛼 > 0(24) 

17 Bias is how well the fit correspond to the true value. 
18 See Figure 1 in this paper. 
19 Adding the identity matrix fixes the invertibility prob-
lem, always compute inverse, and this is more stable 
solution. 

https://www.statisticshowto.com/integer/#abs
https://www.statisticshowto.com/integer/#abs
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For 𝛼 → ∞, 𝑤̂𝐿𝑎𝑠𝑠𝑜 = 0. The Lasso procedure en-

courages simple, sparse models20, indeed some 

coefficients can become zero and be eliminated 

from the model, this way performing a feature se-

lection. The shrinkage amount is given by the 

value of tuning parameter 𝛼. If 𝛼 increase, we 

have some parameters go straightway to zero.  

The optimization of a non-differentiable function 

as Lasso solution is done by a proximal gradient 

descend approach21. 

The first step is to take the gradient descend for 

current 𝑤(𝑘) vector and form a new vector 𝑧(𝑘) : 

𝑧(𝑘) = 𝑤(𝑘) − 𝜂𝑋⊤(𝑋𝑤(𝑘) − 𝑦) (25) 

Where 𝜂 is the step size and 𝑘 is the moment we 

are considering. Then solve the proximal regular-

ize problem for 𝑤(𝑘+1) as follows: 

𝑤(𝑘+1) = argmin
𝑤∈ℝ𝑑

‖𝑧(𝑘) −𝑤‖
2
+ 𝜂𝛼|𝑤| : 𝛼, 𝜂 > 0(26) 

This is a scaler minimization problem indeed we 

can rewrite it as: 

min
𝑤𝑖

∑(𝑧𝑖
(𝑘) −𝑤𝑖)

2
𝑚

𝑖=1

+ 𝛼𝜂|𝑤𝑖| (27) 

Since we have an absolute value for |𝑤𝑖| we con-

sider two cases: 

Case 1 𝒘𝒊 ≥ 𝟎 

𝑚𝑖𝑛
𝑤𝑖

(𝑧𝑖
(𝑘) −𝑤𝑖)

2
 + 𝛼𝜂𝑤𝑖 (29) 

differentiate with respect to 𝑤 and solve: 

−2(𝑧𝑖 −𝑤𝑖)
2 + 𝛼𝜂 = 0 (29) 

since we have the non-negativity constraint over 

𝑤𝑖: 

𝑤𝑖 = {
𝑧𝑖 −

𝑎𝜂

2
, 𝑧𝑖 >

𝛼𝜂

2
0, 𝑒𝑙𝑠𝑒

(30) 

Case 2 𝒘𝒊 < 𝟎 

 
20 Stephanie Glen. “Lasso Regression: Simple Defini-
tion” from “StatisticsHowTo.com: Elementary Statistics 
for the rest of us!”. 

min
𝑤𝑖

(𝑧𝑖
(𝑘)
−𝑤𝑖)

2
−  𝛼𝜂𝑤𝑖 (31) 

differentiate with respect to 𝑤 and solve for it: 

−2(𝑧𝑖 −𝑤𝑖)
2 − 𝛼𝜂 = 0 (32) 

𝑤𝑖 = {
0, 𝑧𝑖 +

𝛼𝜂

2
> 0 

𝑧𝑖 +
𝑎𝜂

2
, 𝑒𝑙𝑠𝑒

(33) 

This solution is also known as the “soft threshold” 

operation. More compactly we can rewrite the 

values for 𝑤𝑖  as follows: 

𝑤𝑖 =

{
 
 

 
 0,

−𝑎𝜂

2
< 𝑧𝑖 <

𝛼𝜂

2
 

𝑧𝑖 −
𝑎𝜂

2
, 𝑧𝑖 >

𝛼𝜂

2

𝑧𝑖 +
𝛼𝜂

2
, 𝑧𝑖 <

−𝑎𝜂

2

(34) 

The common point of these two methods is that 

adding the regularization parameter to the cost 

function the algorithm is forced to pick the lowest 

weights, indeed the goal is to ensure a small coef-

ficient through this regularization parameter. The 

main difference is that many coefficients are ex-

actly zeroed under Lasso, which is never the case 

in Ridge regression where there is not any elimina-

tion of coefficients.  Moreover, Lasso arbitrarily se-

lects any one feature among the highly correlated 

ones, leading to a higher variance then Ridge re-

gression. 

3.7. Cross-validation 

The performance of an algorithm must be evalu-

ated on a new data order to see if it works even on 

a not trained data. The most common approach 

used is to split the dataset into three subsets: 

training, validation and test. The first set will be 

used to train the algorithm and the second to eval-

uate its performance, finally the best output ac-

cording to the validation set will be evaluated on 

the final test set to estimate the risk. 

Cross-validation (CV) is one of the techniques used 

to test the effectiveness of a machine learning 

21 This method requires a convex function.  Lasso lies in 

this category.  

 

https://www.statisticshowto.com/tuning-parameter/
https://www.statisticshowto.com/contact/
https://www.statisticshowto.com/
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model and it is also a re-sampling procedure used 

to evaluate a model if we have a limited data.  The 

CV risk estimate therefore becomes 𝔼[ℓ𝐷(𝐴(𝑠))], 

where 𝐴(𝑠) = ℎ̂  is our estimated predictor on the 

training set. This approach however can be bi-

ased22, therefore a K-Fold cross-validation is 

largely used for evaluating the accuracy of model. 

This approach splits the training set into k subsets 

and each fold at each interaction is used for test-

ing while the remaining are used to training. This 

ensures that every observation from the original 

dataset has the chance of appearing in training 

and test set, this way decreasing the bias of the 

CV23. 

 

We have  𝐷𝑘   the testing part while 𝑆(𝑘)  the train 

part. The number of subsets obtained is k and we 

get a value for ℎ𝑘 = 𝐴(𝑆(𝑘)) computed on the 

training part. The test loss according to K-Fold is  

ℓ̂𝐷𝑘(ℎ𝑘) =
𝐾

𝑚
∑ ℓ(𝑦, ℎ𝑘(𝑥))

(𝑥,𝑦)∈𝐷𝑘

(35) 

After all interactions (form 1 until 𝑘𝑡ℎ interaction) 

we collect the obtained values, and the CV risk es-

timate is the average of all errors: 

 
22 Because we could be just lucky with the train set we 
have chosen and the risk estimated on the test set suf-
fer of this distortion.  
23 As 𝑘 → 𝑁, leads to “Leave-one-out cross-validation”, 
the leave one out approach, where the number of sets 

1

𝐾
∑ ℓ̂𝐷𝑘(ℎ𝑘)

𝐾

𝑘=1

(36) 

The complete algorithm works like this:  

1. Shuffle the dataset randomly, 

2. Split the dataset into k groups, 

3. For each unique group:  

a. Take the group as a hold out or 

test data set, 

b. Take the remaining groups as a 

training data set, 

c. Fit a model on the training set and 

evaluate it on the test set, 

d. Retain the evaluation score and 

discard the model. 

4. Summarize the skill of the model using the 

sample of model evaluation scores24. 

However, this approach cannot be used to tune 

the hyperparameter  that is involved into the esti-

mation of the parameter such that to obtain 

𝑚𝑖𝑛
𝜃𝜖𝛩

ℓ𝐷 (ℎ𝑠
(𝜃))  where ℎ𝑆

(𝜃) = 𝐴𝜃(𝑆) . The choice of 

it must be done before the choice of the training 

set on which the algorithm will be learned. To do 

this we use another variation of CV that is the 

Nested cross-validation, which puts together the 

previous two techniques in such a way to solve the 

hyperparameter choice problem. The set is split 

into k folds, one for testing and the rest for train-

ing. After two loops are made: 

• An internal cross-validation on the train-

ing part of the initial split is also split in k 

folds and run the validation for a grid of all  

𝜃 ∈ 𝛩  choosing the best one.  

• External cross-validation is done in order 

to avoid the dependency over the training 

set, and it takes the best output from the 

inner loop and run it on the entire training 

set. The risk is therefore evaluated on the 

remaining test set of the current external 

fold. 

equal the number of observations. On the contrary for 
smaller values of 𝑘 we have the CV approach. 
24 Brownlee J., 3 August 2020.  Source: machinelearn-
ingmastery.com. 

Figure 2 - K-Fold. Source: mlfromscratch.com 

https://machinelearningmastery.com/author/jasonb/
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This procedure is run on each fold and at the end 

we pick up the expected value of the average risk 

as follows 

𝔼 [𝑚𝑖𝑛
𝜃𝜖𝛩

ℓ𝐷(𝐴𝜃)] (37) 

3.8. Principal component analysis  

Principal Component Analysis is a technique used 

for dimensionality reduction. Its goal is to reduce 

the number of features through a combination of 

the original data variables, in this way keeping 

most of the original information. The standardiza-

tion is needed before the implementation if PCA, 

which finds the eigenvalues and eigenvectors of 

the correlation matrix25. The selection of the prin-

cipal components is based on the variance and 

they will be then independent one from the other. 

The feature that cause more variance is the first 

principal component, and so on until we reach a 

suitable number of explained variance by the prin-

cipal components.  A good way is to plot the vari-

ance against principal components and ignore the 

principal components with diminishing values. 

This way we reduce the variance, and we can im-

prove the stability of the regression by solving the 

multicollinearity. It is a way to identifying patterns 

in data and expressing the data in such a way as to 

highlight the similarities and differences. 

4. Proof of a technical result 

The demonstration of our experiment and all the 

critical considerations will be described here. This 

 
25 The eigenvectors of the Covariance matrix are the di-
rections of the axes where there is the most variance 
(most information). 

material is also available on GitHub at this url: 

https://github.com/mikymaione/HousingPrices 

we have created a Jupiter Notebook to illustrate 

the procedure followed step by step at this url: 

https://github.com/mikymaione/HousingPri-

ces/blob/master/SourceCode/HousingPri-

ces/main.ipynb. 

4.1. Data pre-processing 

Before performing the analysis and implementing 

the regression, pre-procession of data is neces-

sary. The dataset presents features that cannot be 

compared in a linear Euclidean space, therefore 

geometry is not working properly on this row data. 

Indeed, to learn the algorithm, we need to encode 

the features and raise them to a homogeneous 

level, so we can compare them26. The dataset con-

tains 20,640 observations and 10 features for each 

house including the median house value which is 

the target value that we are trying to predict. 

Firstly, we create the two constants of the de-

signed matrix and the target variable: 𝑋, 𝑦. Even 

though among Hedonic model literature27 there is 

a concern about the statistical insignificance of 

some features such as household size, we use two 

approaches: 

• keep all the features in regressions to 

have as much information as possible, 

• use some unsupervised techniques to de-

cide which feature to drop such as PCA. 

4.1.1. Missing values  

The missing values must be handled to avoid er-

rors in the execution of the code, so they are filled 

with the mean value of the corresponding column. 

26 For example, longitude and households are features 
with real numbers however they have different inter-
pretations. 
27See Berna and Craig, 2016. 

Figure 3 - nested cross-validation. Source: mlfromscratch.com 

https://github.com/mikymaione/HousingPrices
https://github.com/mikymaione/HousingPrices/blob/master/SourceCode/HousingPrices/main.ipynb
https://github.com/mikymaione/HousingPrices/blob/master/SourceCode/HousingPrices/main.ipynb
https://github.com/mikymaione/HousingPrices/blob/master/SourceCode/HousingPrices/main.ipynb
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4.1.2. Categorical features 

There is a categorical feature which represents the 

distance from the ocean, we transform the ele-

ments of the column into columns dummies and 

assign it to the data set28.  

4.1.3. Standardization  

The standardization is done by subtracting the 

mean and divided by the variance. In this way we 

have μ = 0 and σ = 1. This procedure is needed as 

both L1 and L2 assume that all features are cen-

tred around 0 and have unit variance. In general, 

this is important for those algorithms that use Eu-

clidean norm and for PCA implementation. 

4.1.4. Correlation matrix  

We explore the symmetric correlation matrix be-

tween the features to see graphically how they 

move together.  The used scoring is Pearson’s co-

efficient 𝑟  and  𝑟 ∈ [−1;  1], if the value is closer 

to |1| there is more correlation, and the sign gives 

the direction. Darker and lighter colours on this 

map are the two extremes. 

 
We have enough evidence that there exists statis-

tical relationship between the variables29. There-

fore, our dataset is suitable for decomposition into 

 
28 This is called hot encoder technique; we do not worry 
about adding extra dimensions as the dummy variable 
sets to zero the features that do not belong to the given 
observation. 

its principal components to increase convergence 

speed and eliminate collinearity by finding the 

core components of the datasets. 

4.2.  Model tuning 

Model tunning consists in the choice of the param-

eters to use into regression. In our case is the 𝛼 

hyperparameter for both Ridge and Lasso regres-

sion. The train-test split is done 80% - 20%30. 

4.2.1. Scoring 

Mean squared error is implemented as scoring, 

and it takes bigger values more than proportion-

ally if the error in prediction increases.  

4.2.2. Choosing the set of parameters α  

In order to obtain a reasonable amount of infor-

mation to determine a certain 𝑓∗ ∈ ℱ where 𝑓∗ is 

the function that minimize the training error, we 

need to set different values of the tuning parame-

ter to find out the best one. A larger value of α 

leads to a high bias but a low variance. On the 

other hand, for small values of α the variance in-

creases, and bias go down. We perform the analy-

sis on α with the relative mean squared error on 

the training data, comparing the Lasso and Ridge 

solutions. Nested cross-validation gives us the 

same best value and the non-nested cross-valida-

tion. We are plotting the parameter using the non-

nested CV and then comparing the two methods.  

Ridge regression 

We use a logarithmic range 𝑙𝑛|𝐹|. Training size m 

is bigger than the 𝑙𝑛|𝐹| in order to avoid underfit-

ting. 

29 See the lighter square 4x4 in the middle.  
30 80/20 rule: following the Pareto principle.  

Figure 4 – Correlation matrix between features – 
Pearson coefficient 
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As we can see the optimal value for the hyperpa-

rameter that optimize the squared loss is in be-

tween the range (0; 0.1], after that the squared 

lost increases. The generated best value of the pe-

nalized term is 0.04079, according to nested and 

non-nested validation curve. 

 

This graph shows how the nested cross-validation 

has a quite stable result and it is independent from 

the individual trial. On the other hand, the non-

nested cross-validation is influenced by the indi-

vidual trial interaction with upper and lower 

bounds that have a huge variance. 

Lasso regression 

For Lasso implementation we have the values in 

Figure 7. 

 
In Lasso regression this increase is smoother, and 

the loss is more stable for 𝛼 in between (0; 1]. The 

values of used α are linear, and the best α accord-

ing to the nested-cross-validation and non-nested 

the validation curve is 0.37312. 

This graph shows the path for the nested and non-

nested cross-validation, and again the latter per-

forms worst given the variation of the individual 

trials.  The nested cross-validation still being more 

stable and therefore not dependent on the trials. 

4.3. Learning algorithm 

Once we have determined the hyperparameter, 

the optimization of the learning algorithm is done. 

For Ridge regression we use the Cholesky method, 

that is the closed form. For Lasso regression we 

 

Figure 7 – Lasso regression: validation curve with α ∈ 
(0; 24) 

Figure 5 - Ridge regression: validation curve with α ∈ (0; 0.8) 

Figure 6 - Ridge: nested cross-validation (red) vs non-nested 
cross-validation (blue) of the best α 

Figure 8 – Lasso: nested cross-validation (red) vs non-nested 
cross-validation (blue) of the best α 
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apply the proximate gradient descend31. This pro-

cedure is internal to the Ridge and Lasso function, 

and the learning algorithm is the output.  

4.3.1. Ridge learning algorithm  

We fit the best 𝛼 to plot the learning curve perfor-

mance. Training error becomes larger when itera-

tions are increased, and the test error is higher as 

we could always expect better performances on 

the training set. As we see the overfitting disap-

pears as we increase the training size, it starts go-

ing down from almost 2,000 training size, and it is 

improving with the training size growth exhibiting 

a stable squared loss (4.86 in Figure 9). 

 
In this plot (Figure 10) we can visualize how the 

predicted value differs from the real values. This is 

done with fit and predict functions. 

 
The prediction is more consistent with lower 

prices and becomes sparser for higher values, this 

 
31 This is possible because we take an approximation of 
the gradient since Lasso function is not derivable.  

can be caused by the presence of the outliers. The 

R2 is around 63%. 

Here (Figure 11) we can see the magnitude of each 

coefficient, and its power on the prediction of the 

target variable. 

 
Looking at the coefficients of Ridge regression we 

can conclude that household size is statistically in-

significant as the literature suggests32. On the 

other hand, the driven force is the house location 

in island, which presents a direct and positive im-

pact on the predicted prices.  Also, the median in-

come causes higher prices. On the other hand, the 

inland location has a negative impact on the 

prices, so as for latitude and longitude.  

4.3.2. Lasso learning algorithm  

The learning curve of Lasso regression is showed 

below (Figure 12). 

 

Similarly to the previous Ridge regression, the er-

ror is going down after a training size of 5,000 and 

32 Berna and Craig, 2016. 

Figure 10 - Ridge regression: scatter plot prediction vs test 

Figure 9 - Ridge regression: learning curve with different train-
ing set sizes 

Figure 12 - Lasso regression: learning curve with different 
training set sizes 

Figure 11 - Ridge: coefficients magnitude 
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becomes stable around 4.87. The variance is con-

tained and overfitting disappears as the training 

size increases. 

The coefficients magnitude is shown in this graph. 

 

Island location has a huge power in the prediction, 

it means that it drives the predicted values. Inland 

influence negatively, so as longitude and lati-

tude33. Median income is the second driven force 

of the housing price prediction.  Some of the coef-

ficients them are like the ones of Ridge regression 

in Figure 11. However, values differ due to the 

shrinkage power of the Lasso penalty, for example 

Near bay location here is a negative number. 

4.4. Principal Component Analysis  

The following graphs34 show how the PCA works 

when it is implemented on this database. The dif-

ferences between the points on the 1st pc (plotted 

on x-axes) are more significant than the differ-

ences between the 2nd pc (y-axes). 

As we can see in Figure 14 there are two main pre-

dictors that cause respectively the first largest var-

iance and the second variation. The negative val-

ues mean the existence of an inverse correlation 

between the factor PCA and the variables. The 

group of points that are close to each other are 

more similar. 

 
33 We can thing about them as the two faces of the 
same coin, an increase in latitude and longitude means 
a geographical location more inland and faraway from 
the ocean. 

 

In the next plot we see how the cumulative vari-

ance is explained by each feature (in our case 13).  

 
After 3 features the variance significatively drops 

and above 8 features we do not gain more infor-

mation, indeed the variance is almost 0. We will 

implement the decomposition on 8 features and 

plot the learning curve using our learned variables 

of the Ridge regression and projecting the data-

points. 

34 Cesa-Binchi, 2020, Linear regression and Ridge re-
gression. https://github.com/nicolo63/CDS/blob/mas-
ter/Part_10.ipynb  

Figure 14 - PCA for 2 principal components on the 
axes. In the graph we have the predictors and their 
contribution to the variance.  

Figure 13 - Lasso: coefficients magnitude 

Figure 15 - PCA for singular values vs cumulative variance 

https://github.com/nicolo63/CDS/commit/d4653fc0a65a0044bf418a23f4b8979623c3b1cf
https://github.com/nicolo63/CDS/commit/d4653fc0a65a0044bf418a23f4b8979623c3b1cf
https://github.com/nicolo63/CDS/blob/master/Part_10.ipynb
https://github.com/nicolo63/CDS/blob/master/Part_10.ipynb
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The performance of the curve is quite worst com-

paring with the Ridge regression curve using an 

equivalent measurement of the error as in Figure 

17:  the variance of PCA learning curve is high and 

the risk estimate is not improving.  

 
Figure 17 - Ridge learning curve 

In the following graph we plot again the principal 

components using the learned variables. Each 

point is a predictor that we have learned. 

 

As we can see the spread is not improved crucially, 

we still have just one variable that causes the first 

large variance, and another for the second large 

variance. However, there are 2 main groups 

among the second main variance: the three varia-

bles that cluster near 0 are similar and have less 

variation, and 3 variables in the negative part of 

the graph. 

5. Some critical considerations 

We have performed two different regression on 

the dataset oh houses, and it results in a very sim-

ilar performance for both Ridge and Lasso regular-

izations, this can be because in both methods we 

are using the best nested cross- validated penal-

ized parameter. Indeed, the predicted value by 

Lasso model in the belove Figure 19 is almost the 

same as the Ridge prediction in Figure 10. How-

ever, comparing the risk estimator, the Ridge re-

gression performs slightly better than Lasso (4.86 

vs 4.87). 

 
Moreover, we have tried to improve the risk using 

PCA, but the evidence shows that PCA do not im-

prove the risk estimate. The regularized forms are 

enough to have an accurate prediction of the 

housing prices. In general, for this specific data-

base we have noticed if we drop some feature via 

variable selection or some elements such as outli-

ers, the predictive power is poor. Indeed, the per-

formance is better when all the features are con-

sidered in the prediction as we have done in this 

experiment. 

Figure 19 - Lasso: scatter plot prediction vs test 

Figure 18 - Plot of the learned model after PCA 

Figure 16 - PCA: test and train loss for the learned model using 
8-PCA decomposition 
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